You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

385 lines
8.6 KiB

package main
// delete me
import (
"log"
"sort"
"sync"
"time"
"bitbucket.org/smcquay/bandwidth"
)
const maxPlayer = 128
type BotHealth struct {
RobotId string `json:"robot_id"`
Health int `json:"health"`
}
type Scanner struct {
Id string `json:"id"`
Type string `json:"type"`
}
type MapLock struct {
m map[string]*game
sync.RWMutex
}
// get is a function that returns a game if found, and creates one if
// not found and force is true. In order to get a hash (rather than use
// the string you pass) send "" for id.
func (ml *MapLock) get(id string) *game {
ml.Lock()
g, _ := ml.m[id]
ml.Unlock()
return g
}
func (ml *MapLock) add(g *game) {
ml.Lock()
ml.m[g.id] = g
ml.Unlock()
}
type BotStats struct {
Kills int
Deaths int
Suicides int
Shots int
DirectHits int
Hits int
Wins int
}
type PlayerStats struct {
BotStats map[string]*BotStats
Wins int
}
type GameStats struct {
PlayerStats map[string]*PlayerStats
sync.RWMutex
}
type game struct {
id string
players map[*player]bool
projectiles map[*Projectile]bool
splosions map[*Splosion]bool
obstacles []Obstacle
obstacle_count int
register chan *player
unregister chan *player
turn int
players_remaining int
width, height float32
maxPoints int
spectators map[*Spectator]bool
sregister chan *Spectator
sunregister chan *Spectator
kill chan bool
repair_hp int
repair_rate float32
tick_duration int
stats GameStats
mode GameMode
bw *bandwidth.Bandwidth
}
type GameMode interface {
setup(g *game)
tick(gg *game, payload *Boardstate)
gameOver(gg *game) (bool, *GameOver)
}
func NewGame(id string, width, height float32, obstacles, tick, maxPoints int, mode string) (*game, error) {
bw, err := bandwidth.NewBandwidth(
[]int{1, 10, 60},
time.Duration(500)*time.Millisecond,
)
if err != nil {
log.Fatal("seriously, what the fuck")
return nil, err
}
go bw.Run()
g := &game{
id: id,
register: make(chan *player, maxPlayer),
unregister: make(chan *player, maxPlayer),
projectiles: make(map[*Projectile]bool),
splosions: make(map[*Splosion]bool),
obstacles: GenerateObstacles(obstacles, width, height),
obstacle_count: obstacles,
players: make(map[*player]bool),
turn: 0,
width: width,
height: height,
maxPoints: maxPoints,
spectators: make(map[*Spectator]bool),
sregister: make(chan *Spectator),
sunregister: make(chan *Spectator),
kill: make(chan bool, maxPlayer),
repair_hp: 5,
repair_rate: 3.0,
tick_duration: tick,
players_remaining: 2,
stats: GameStats{PlayerStats: make(map[string]*PlayerStats)},
bw: bw,
}
if mode == "melee" {
g.mode = &melee{respawn: make(map[*Robot]float64)}
} else {
g.mode = &deathmatch{}
}
g.mode.setup(g)
return g, nil
}
func (g *game) tick(payload *Boardstate) {
g.players_remaining = 0
payload.Objects = MinifyObstacles(g.obstacles)
// Update Players
for p := range g.players {
living_robots := 0
for _, r := range p.Robots {
if r.Health > 0 {
living_robots++
r.Tick(g)
}
if len(r.Message) > 0 {
if len(r.Message) > 100 {
r.Message = r.Message[0:99]
}
payload.Messages = append(payload.Messages, r.Message)
}
payload.OtherRobots = append(
payload.OtherRobots,
r.GetTruncatedDetails())
payload.AllBots = append(
payload.AllBots,
BotHealth{RobotId: r.Id, Health: r.Health})
}
if living_robots > 0 {
g.players_remaining++
}
}
// Update Projectiles
for pr := range g.projectiles {
pr.Tick(g)
}
// We do this here, because the tick calls can alter g.projectiles
for pr := range g.projectiles {
payload.Projectiles = append(payload.Projectiles, *pr)
}
// Update Splosions
for s := range g.splosions {
s.Tick()
if !s.Alive() {
delete(g.splosions, s)
}
payload.Splosions = append(payload.Splosions, *s)
}
}
func (g *game) sendUpdate(payload *Boardstate) {
// Ensure that the robots are always sent in a consistent order
sort.Sort(RobotSorter{Robots: payload.OtherRobots})
sort.Sort(AllRobotSorter{Robots: payload.AllBots})
for p := range g.players {
// Copy the payload but only add the robots in scanner range
player_payload := NewBoardstate()
player_payload.Messages = payload.Messages
player_payload.AllBots = payload.AllBots
player_payload.Turn = payload.Turn
for _, r := range p.Robots {
player_payload.MyRobots = append(player_payload.MyRobots, *r)
// player_payload.OtherRobots = append(
// player_payload.OtherRobots,
// r.GetTruncatedDetails())
}
player_payload.Objects = [][4]int{}
player_payload.Splosions = []Splosion{}
player_payload.Projectiles = []Projectile{}
living_robots := 0
for _, r := range p.Robots {
if r.Health > 0 {
living_robots++
// Filter robots by scanner
for player := range g.players {
for _, scan_entry := range r.Scanners {
for _, r := range player.Robots {
if r.Id == scan_entry.Id {
player_payload.OtherRobots = append(
player_payload.OtherRobots,
r.GetTruncatedDetails())
}
}
}
}
// Filter projectiles
for proj := range g.projectiles {
if proj.Owner == r {
player_payload.Projectiles = append(
player_payload.Projectiles,
*proj)
}
for _, scan_entry := range r.Scanners {
if proj.Id == scan_entry.Id {
player_payload.Projectiles = append(
player_payload.Projectiles,
*proj)
}
}
}
// Filter splosions
for splo := range g.splosions {
for _, scan_entry := range r.Scanners {
if splo.Id == scan_entry.Id {
player_payload.Splosions = append(
player_payload.Splosions,
*splo)
}
}
}
// Filter objects
for _, ob := range g.obstacles {
if ob.distance_from_point(r.Position) < float32(r.Stats.ScannerRadius)+r.ScanCounter {
player_payload.Objects = append(
player_payload.Objects, ob.minify())
}
}
}
}
// if living_robots == 0 {
// player_payload.OtherRobots = payload.OtherRobots
// player_payload.Projectiles = payload.Projectiles
// player_payload.Splosions = payload.Splosions
// player_payload.Objects = payload.Objects
// }
p.send <- player_payload
}
for s := range g.spectators {
s.send <- payload
}
}
func (g *game) run() {
var t0, t1 time.Time
ticker := time.NewTicker(time.Duration(conf.Tick) * time.Millisecond)
for {
select {
case <-g.kill:
log.Printf("game %s: received kill signal, dying gracefully", g.id)
close(g.bw.Quit)
games.Lock()
for player := range g.players {
close(player.send)
}
delete(games.m, g.id)
games.Unlock()
return
case p := <-g.register:
g.players[p] = true
g.stats.PlayerStats[p.Id] = &PlayerStats{
BotStats: make(map[string]*BotStats),
}
for _, r := range p.Robots {
g.stats.PlayerStats[p.Id].BotStats[r.Name] = &BotStats{}
r.gameStats = g.stats.PlayerStats[p.Id].BotStats[r.Name]
}
case p := <-g.unregister:
delete(g.players, p)
close(p.send)
case s := <-g.sregister:
g.spectators[s] = true
case s := <-g.sunregister:
delete(g.spectators, s)
close(s.send)
case <-ticker.C:
t0 = time.Now()
payload := NewBoardstate()
g.turn++
payload.Turn = g.turn
if *verbose {
log.Printf("\033[2JTurn: %v", g.turn)
log.Printf("Players: %v", len(g.players))
log.Printf("Projectiles: %v", len(g.projectiles))
log.Printf("Explosions: %v", len(g.splosions))
}
// UPDATE GAME STATE
if end, data := g.mode.gameOver(g); end {
g.sendGameOver(data)
}
g.tick(payload)
g.mode.tick(g, payload)
t1 = time.Now()
if *verbose {
log.Printf("Turn Processes %v\n", t1.Sub(t0))
}
// SEND THE UPDATE TO EACH PLAYER
g.sendUpdate(payload)
t1 = time.Now()
if *verbose {
log.Printf("Sent Payload %v\n", t1.Sub(t0))
}
}
}
}
func (g *game) sendGameOver(eg *GameOver) {
log.Printf("sending out game over message: %+v", eg)
for p := range g.players {
p.send <- eg
}
for s := range g.spectators {
s.send <- eg
}
}
// returns a GameParam object popuplated by info from the game. This is
// used during client/server initial negociation.
func (g *game) gameParam() *GameParam {
return &GameParam{
BoardSize: BoardSize{
Width: g.width,
Height: g.height,
},
MaxPoints: g.maxPoints,
Type: "gameparam",
}
}