determine size of rectangle

To determine the size of rectangle, it was required to be able to
determine who would be the neighboring points.  A neighbor is a point
that would make the exterior of the rectangle, not the cross-section.
Finding the neighbors allows for a simple l*w to calculate size.
This commit is contained in:
Derek McQuay 2016-08-26 11:37:55 -07:00
parent b9bc23566f
commit fc4c1c820b
2 changed files with 61 additions and 1 deletions

View File

@ -1,6 +1,9 @@
package rect
import "math"
import (
"math"
"sort"
)
type Rectangle struct {
P1, P2, P3, P4 Point
@ -22,3 +25,35 @@ func (r Rectangle) IsRect() bool {
dd4 := math.Sqrt(math.Abs(cx-r.P4.X)) + math.Sqrt(math.Abs(cy-r.P4.Y))
return dd1 == dd2 && dd1 == dd3 && dd1 == dd4
}
func (r Rectangle) Neighbors(p Point) (Point, Point) {
keys := []float64{distance(r.P1, p), distance(r.P2, p), distance(r.P3, p), distance(r.P4, p)}
sort.Float64s(keys)
n := []Point{}
d := distance(r.P1, p)
if keys[1] == d || keys[2] == d {
n = append(n, r.P1)
}
d = distance(r.P2, p)
if keys[1] == d || keys[2] == d {
n = append(n, r.P2)
}
d = distance(r.P3, p)
if keys[1] == d || keys[2] == d {
n = append(n, r.P3)
}
d = distance(r.P4, p)
if keys[1] == d || keys[2] == d {
n = append(n, r.P4)
}
return n[0], n[1]
}
func (r Rectangle) Size() float64 {
n1, n2 := r.Neighbors(r.P1)
return distance(r.P1, n1) * distance(r.P1, n2)
}
//
//func Containment(r1, r2, Rectangle) bool {
//}

View File

@ -27,3 +27,28 @@ func TestIsRect(t *testing.T) {
}
}
func TestSize(t *testing.T) {
var isRectTests = []struct {
r Rectangle
expected float64
}{
{Rectangle{P1: Point{1, 1}, P2: Point{1, 2}, P3: Point{2, 1}, P4: Point{2, 2}}, 1},
{Rectangle{P1: Point{0, 0}, P2: Point{0, 1}, P3: Point{1, 0}, P4: Point{1, 1}}, 1},
{Rectangle{P1: Point{0, 0}, P2: Point{0, -1}, P3: Point{-1, 0}, P4: Point{-1, -1}}, 1},
{Rectangle{P1: Point{1.5, 1.5}, P2: Point{1.5, 3.5}, P3: Point{3.5, 1.5}, P4: Point{3.5, 3.5}}, 4},
{Rectangle{P1: Point{0, 0}, P2: Point{0, 3}, P3: Point{2, 0}, P4: Point{2, 3}}, 6},
{Rectangle{P1: Point{0, 0}, P2: Point{0, 100}, P3: Point{100, 0}, P4: Point{100, 100}}, 10000},
}
for _, rt := range isRectTests {
actual := rt.r.Size()
if actual != rt.expected {
t.Errorf(
"failed spiral:\n\texpected: %d\n\t actual: %d",
rt.expected,
actual,
)
}
}
}