added documentation for all functions
This commit is contained in:
parent
9b908a8db1
commit
ecc870943e
13
line.go
13
line.go
@ -5,20 +5,26 @@ import (
|
||||
"math"
|
||||
)
|
||||
|
||||
// line is described as two Points
|
||||
type line struct {
|
||||
pt1, pt2 Point
|
||||
}
|
||||
|
||||
func lineHelper(l line) (float64, float64, float64) {
|
||||
// determinants aids by calculating necesary values for performing
|
||||
// calculations using the determinant of two points
|
||||
func determinants(l line) (float64, float64, float64) {
|
||||
a := l.pt2.Y - l.pt1.Y
|
||||
b := l.pt1.X - l.pt2.X
|
||||
c := a*l.pt1.X + b*l.pt1.Y
|
||||
return a, b, c
|
||||
}
|
||||
|
||||
// lineIntersection returns the Point of intersection between two lines.
|
||||
// lineIntersection will only return a point if the point lies on the
|
||||
// line, otherwise it will return a nil point and an error
|
||||
func lineIntersection(l1, l2 line) (Point, error) {
|
||||
a1, b1, c1 := lineHelper(l1)
|
||||
a2, b2, c2 := lineHelper(l2)
|
||||
a1, b1, c1 := determinants(l1)
|
||||
a2, b2, c2 := determinants(l2)
|
||||
det := a1*b2 - a2*b1
|
||||
|
||||
if det != 0 {
|
||||
@ -37,6 +43,7 @@ func lineIntersection(l1, l2 line) (Point, error) {
|
||||
return Point{}, fmt.Errorf("lines do not intersect")
|
||||
}
|
||||
|
||||
// lineOnLine determins if both points of a line, l1, are on the same line, l2
|
||||
func lineOnLine(l1, l2 line) bool {
|
||||
if onLine(l1.pt1, l1.pt2, l2.pt1) && onLine(l1.pt1, l1.pt2, l2.pt2) {
|
||||
return true
|
||||
|
3
point.go
3
point.go
@ -2,14 +2,17 @@ package rect
|
||||
|
||||
import "math"
|
||||
|
||||
// Point is a struct defining a coordinates position on a 2D plane
|
||||
type Point struct {
|
||||
X, Y float64
|
||||
}
|
||||
|
||||
// distance calculates the distance between two points
|
||||
func distance(p1, p2 Point) float64 {
|
||||
return math.Sqrt(math.Pow((p1.X-p2.X), 2) + math.Pow((p1.Y-p2.Y), 2))
|
||||
}
|
||||
|
||||
// onLine determines if point p lies on the line formed by points rp1 and rp2
|
||||
func onLine(rp1, rp2, p Point) bool {
|
||||
if math.Abs(distance(rp1, p)+distance(rp2, p)-distance(rp1, rp2)) < ɛ {
|
||||
minx, maxx := math.Min(rp1.X, rp2.X), math.Max(rp1.X, rp2.X)
|
||||
|
20
rectangle.go
20
rectangle.go
@ -5,6 +5,8 @@ import (
|
||||
"sort"
|
||||
)
|
||||
|
||||
// Rectangle struct defines a plane figure with four straight sides
|
||||
// and four right angles, which contains 4 vertixes points, P1 through P4
|
||||
type Rectangle struct {
|
||||
P1, P2, P3, P4 Point
|
||||
}
|
||||
@ -12,6 +14,9 @@ type Rectangle struct {
|
||||
// maximum error used for floating point math
|
||||
var ɛ = 0.00001
|
||||
|
||||
// isRect determins if the rectangle provided really is a rectangle, which
|
||||
// by definition means a plane figure with four straight sides and four
|
||||
// right angles.
|
||||
func (r Rectangle) isRect() bool {
|
||||
// make sure they aren't all just the same point
|
||||
if (r.P1.X == r.P2.X && r.P1.X == r.P3.X && r.P1.X == r.P4.X) &&
|
||||
@ -29,6 +34,8 @@ func (r Rectangle) isRect() bool {
|
||||
return math.Abs(dd1-dd2) < ɛ && math.Abs(dd1-dd3) < ɛ && math.Abs(dd1-dd4) < ɛ
|
||||
}
|
||||
|
||||
// neighbors returns the two points that form the line which creates the right
|
||||
// angle of the point passed in as a parameter.
|
||||
func (r Rectangle) neighbors(p Point) (Point, Point) {
|
||||
keys := []float64{distance(r.P1, p), distance(r.P2, p), distance(r.P3, p), distance(r.P4, p)}
|
||||
sort.Float64s(keys)
|
||||
@ -52,11 +59,15 @@ func (r Rectangle) neighbors(p Point) (Point, Point) {
|
||||
return n[0], n[1]
|
||||
}
|
||||
|
||||
// size returns the size of the Rectangle
|
||||
func (r Rectangle) size() float64 {
|
||||
n1, n2 := r.neighbors(r.P1)
|
||||
return distance(r.P1, n1) * distance(r.P1, n2)
|
||||
}
|
||||
|
||||
// inOrder returns a []Point, let us call pts, in which the four sides of the
|
||||
// Rectangle can be defined as pts[0] -- pts[1], pts[0] -- pts[2],
|
||||
// pts[3] -- pts[1], and pts[3] -- pts[2]
|
||||
func (r Rectangle) inOrder() []Point {
|
||||
n1, n2 := r.neighbors(r.P1)
|
||||
accross := &Point{}
|
||||
@ -72,6 +83,8 @@ func (r Rectangle) inOrder() []Point {
|
||||
return []Point{r.P1, n1, n2, *accross}
|
||||
}
|
||||
|
||||
// Adjacency detects whether two rectangles, r1, and r2, are adjacent.
|
||||
// Adjacency is defined as the sharing of a side
|
||||
func Adjacency(r1, r2 Rectangle) bool {
|
||||
order1 := r1.inOrder()
|
||||
order2 := r2.inOrder()
|
||||
@ -99,6 +112,9 @@ func Adjacency(r1, r2 Rectangle) bool {
|
||||
return false
|
||||
}
|
||||
|
||||
// Intersection determine whether two rectangles, r1 and r2, have one or more
|
||||
// intersecting lines and produce a result, []Point, identifying the points
|
||||
// of intersection
|
||||
func Intersection(r1, r2 Rectangle) []Point {
|
||||
order1 := r1.inOrder()
|
||||
order2 := r2.inOrder()
|
||||
@ -128,6 +144,10 @@ func Intersection(r1, r2 Rectangle) []Point {
|
||||
return pts
|
||||
}
|
||||
|
||||
// sumOfTri determines if the sum of the areas of the triangles created from
|
||||
// point p to two neighboring vertices of a side of the Rectangle, r, add up
|
||||
// to the same size as the Rectangle, r. This is one way to determine if
|
||||
// a point is inside of a Rectangle.
|
||||
func sumOfTri(r Rectangle, p Point) bool {
|
||||
n1, n2 := r.neighbors(r.P1)
|
||||
x1, x2 := Point{}, Point{}
|
||||
|
@ -2,6 +2,7 @@ package rect
|
||||
|
||||
import "math"
|
||||
|
||||
// Returns the size of the triangle formed by points p1, p2, and p3
|
||||
func sizeTriangle(p1, p2, p3 Point) float64 {
|
||||
return math.Abs((p1.X*p2.Y + p2.X*p3.Y + p3.X*p1.Y - p1.Y*p2.X - p2.Y*p3.X - p3.Y*p1.X) / 2)
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user