from __future__ import division import pprint ''' http://en.wikipedia.org/wiki/Polygon_mesh Polygon meshes may be represented in a variety of ways, using different methods to store the vertex, edge and face data. These include: - Face-vertex - Winged-edge - Half-edge - Quad-edge - Corner-tables - Vertex-vertex - Face-vertex We have chosen to use a winged-edge style mesh for our purpopses. ''' def cross(a, b): i = a.y * b.z - a.z * b.y j = a.z * b.x - a.x * b.z k = a.x * b.y - a.y * b.x return Vertex(i, j, k) class Vertex(object): ''' A vertex is a position along with other information such as color, normal vector and texture coordinates. ''' def __init__(self, x=0.0, y=0.0, z=0.0): ''' ''' self.x = x self.y = y self.z = z def __eq__(self, other): if(self.x == other.x and self.y == other.y and self.z == other.z): return True else: return False def __add__(self, other): # for now just assume type(other) = Vertex... bad, I know return Vertex(self.x + other.x, self.y + other.y, self.z + other.z) def __radd__(self, other): return other + self def __mul__(self, other): if isinstance(other, Vertex): return cross(self, other) elif isinstance(other, (float, int)): return Vertex(self.x * other, self.y * other, self.z * other) else: raise TypeError("{0} has an unexpected type: {1}".format( other, type(other))) def __rmul__(self, other): return self.__mul__(other) def __div__(self, other): # same assumption as __mult__ return Vertex(self.x / other, self.y / other, self.z / other) __truediv__ = __div__ def __neg__(self): return Vertex(-self.x, -self.y, -self.z) def __unicode__(self): d = { 'id': self.id, 'parent_id': self.parent_id, 'coords': [self.x, self.y, self.z] } return pprint.pformat(d) __str__ = __unicode__ __repr__ = __unicode__ class Edge(object): ''' ''' next_id = 0 def __init__(self, polygon, parent_id=None, vs=None, es=None, fs=None): ''' ''' self.polygon = polygon self.parent_id = parent_id self.vertex_ids = vs or [] self.edge_ids = es or [] self.face_ids = fs or [] self.id = Edge.next_id Edge.next_id += 1 def neighbor_face_id(self, neighbor_face_id): '''Get neighboring face id ''' if neighbor_face_id == self.face_ids[0]: return self.face_ids[1] else: return self.face_ids[0] def __unicode__(self): d = { 'id': self.id, 'vertex_ids': self.vertex_ids, 'edge_ids': self.edge_ids, 'face_ids': self.face_ids, } return pprint.pformat(d) __str__ = __unicode__ __repr__ = __unicode__ @property def vertices(self): return [self.polygon.vertex(v_id) for v_id in self.vertex_ids] @property def faces(self): return [self.polygon.face(f_id) for f_id in self.face_ids] def winged_edges_at_vertex(self, index): edge_ids = [] for edge in self.edges: if self.vertex_ids[index] in edge.vertex_ids: edge_ids.append(edge.id) return edge_ids class Face(object): ''' A face is a closed set of edges, in which a triangle face has three edges, and a quad face has four edges. ''' next_id = 0 def __init__(self, polygon, parent_id=None, es=None): ''' ''' self.polygon = polygon self.parent_id = parent_id self.edge_ids = es or [] self.id = Face.next_id Face.next_id += 1 def __unicode__(self): d = {'id': self.id, 'edge_ids': self.edge_ids} return pprint.pformat(d) __str__ = __unicode__ __repr__ = __unicode__ def edge(self, edge_id): return self.polygon.edge(edge_id) @property def edges(self): return [self.polygon.edge(e_id) for e_id in self.edge_ids] @property def vertices(self): vertices = [] for edge_id in self.edge_ids: edge = self.polygon.edge(edge_id) vertices.extend(edge.vertices) return list(set(vertices)) @property def centroid(self): ''' ''' # gather all face vertex coords face_vertices = self.vertices xs = [vertex.x for vertex in face_vertices] ys = [vertex.y for vertex in face_vertices] zs = [vertex.z for vertex in face_vertices] # average each vertex component x = sum(xs) / len(xs) y = sum(ys) / len(ys) z = sum(zs) / len(zs) return [x, y, z] class Polygon(object): ''' ''' def __init__(self, vs=None, es=None, fs=None): self.vertices = vs or [] self.edges = es or [] self.faces = fs or [] def face(self, face_id): for face in self.faces: if face.id == face_id: return face return None def edge(self, edge_id): for edge in self.edges: if edge.id == edge_id: return edge return None def vertex(self, vertex_id): for vertex in self.vertices: if vertex.id == vertex_id: return vertex return None def edge_ids_with_parent(self, parent_edge_id): child_edge_ids = [] for edge in self.edges: if edge.parent_id == parent_edge_id: child_edge_ids.append(edge.id) return child_edge_ids def __unicode__(self): d = { 'vertices': self.vertices, 'edges': self.edges, 'faces': self.faces, } return pprint.pformat(d) __str__ = __unicode__ __repr__ = __unicode__