Merge pull request #5 from willblatt/master

It plots it out, it looks mostly correct
This commit is contained in:
Stephen McQuay 2012-03-19 08:22:39 -07:00
commit 4e3573a5b9

View File

@ -88,7 +88,7 @@ class Vertex(object):
'''
A vertex is a position along with other information such as color, normal vector and texture coordinates.
'''
def __init__(self, x, y, z):
def __init__(self, x=0, y=0, z=0):
self.x = x
self.y = y
self.z = z
@ -97,6 +97,24 @@ class Vertex(object):
def __repr__(self):
return "<%.2f, %.2f, %.2f>" % (self.x, self.y, self.z)
def __add__(self, other):
# for now just assume type(other) = Vertex... bad, I know
return Vertex(self.x + other.x, self.y + other.y, self.z + other.z)
def __radd__(self, other):
return self.__add__(other)
def __mul__(self, other):
# for now just assume type(other) = int or float
return Vertex(self.x * other, self.y * other, self.z * other)
def __rmul__(self, other):
return self.__mul__(other)
def __div__(self, other):
# same assumption as __mult__
return Vertex(self.x / other, self.y / other, self.z / other)
class Edge(object):
'''
'''
@ -104,34 +122,49 @@ class Edge(object):
self.vertices = []
self.faces = []
self.edges = []
self.__edgeVertex = None
self.__subEdges = []
def neighborFace(self, neighborFace):
if neighborFace == self.faces[0]:
return self.faces[1]
else:
return self.faces[0]
def __getMidPoint(self):
return sum(self.vertices, Vertex())/len(self.vertices)
midPoint = property(fget=__getMidPoint)
def edgeVertex(self):
def __getSubEdges(self):
if not self.__subEdges:
self.__subEdges = [Edge(), Edge()]
self.__subEdges[0].vertices = [self.vertices[0], self.edgeVertex]
self.__subEdges[1].vertices = [self.edgeVertex, self.vertices[1]]
return self.__subEdges
subEdges = property(fget=__getSubEdges)
def __getEdgeVertex(self):
'''
Set each edge vertices to be the average of the two neighboring
face vertices and its two original end vertices.
'''
# two neighboring face vertices:
neighborVertices = [face.centroid for face in self.faces]
vertices = list(self.vertices)
vertices.extend(neighborVertices)
return self.__averageVertices(vertices)
if not self.__edgeVertex:
# two neighboring face vertices:
neighboringFaceVertices = [face.centroid for face in self.faces]
neighboringFaceVertices.extend(self.vertices)
xs = [vertex.x for vertex in neighboringFaceVertices]
ys = [vertex.y for vertex in neighboringFaceVertices]
zs = [vertex.z for vertex in neighboringFaceVertices]
x = sum(xs)/len(xs)
y = sum(ys)/len(ys)
z = sum(zs)/len(zs)
self.__edgeVertex = Vertex(x, y, z)
self.__edgeVertex.edges.extend(self.__subEdges)
return self.__edgeVertex
edgeVertex = property(fget=__getEdgeVertex)
def __averageVertices(self, vertices):
xs = [vertex.x for vertex in vertices]
ys = [vertex.y for vertex in vertices]
zs = [vertex.z for vertex in vertices]
x = sum(xs)/len(xs)
y = sum(ys)/len(ys)
z = sum(zs)/len(zs)
return Vertex(x, y, z)
return
class Face(object):
'''
@ -139,25 +172,94 @@ class Face(object):
'''
def __init__(self):
self.edges = []
self.__centroid = None
self.__interiorEdges = []
self.__subFaces = []
def __getCentroid(self):
# gather all vertex coords
faceVertices = self.__getFaceVertices()
xs = [vertex.x for vertex in faceVertices]
ys = [vertex.y for vertex in faceVertices]
zs = [vertex.z for vertex in faceVertices]
if not self.__centroid:
# gather all face vertex coords
faceVertices = list(set([vertex for edge in self.edges for vertex in edge.vertices]))
xs = [vertex.x for vertex in faceVertices]
ys = [vertex.y for vertex in faceVertices]
zs = [vertex.z for vertex in faceVertices]
# average each vertex component
x = sum(xs) / len(xs)
y = sum(ys) / len(ys)
z = sum(zs) / len(zs)
# average each vertex component
x = sum(xs) / len(xs)
y = sum(ys) / len(ys)
z = sum(zs) / len(zs)
return Vertex(x, y, z)
self.__centroid = Vertex(x, y, z)
return self.__centroid
centroid = property(fget=__getCentroid)
def __getFaceVertices(self):
return list([vertex for edge in self.edges for vertex in edge.vertices])
vertices = property(fget=__getFaceVertices)
def __getSubFaces(self):
self.__setupSubDivisions()
return self.__subFaces
subFaces = property(fget=__getSubFaces)
def __getInteriorEdges(self):
self.__setupSubDivisions()
return self.__interiorEdges
interiorEdges = property(fget=__getInteriorEdges )
def __setupSubDivisions(self):
'''
v0 ev0 v1
*------e0-----*
| | |
| | |
ev3 e|11----f5----e|1 ev1
| | |
| | |
*------e2-----*
v3 ev2 v2
'''
if not self.__subFaces:
# create empty subFaces that will be filled with edge references below
# these need to at least exist so the interior edges have something to reference
self.__subFaces = [Face() for edge in self.edges]
if not self.__interiorEdges:
# set up empty edge objects to be filled below
self.__interiorEdges = [Edge() for edge in self.edges]
# each interior edge connects the exterior edge vertex (mid-point) to the faceVertex (centroid)
for index in range(len(self.edges)):
prevIndex = (index - 1) % len(self.edges)
nextIndex = (index + 1) % len(self.edges)
# end vertices are face centroid and currEdge edgeVertex
self.__interiorEdges[index].vertices = [self.edges[index].edgeVertex,
self.centroid]
# wing edges are the current edge's subEdges (ordered same as vertex order) and the prev and next interior edges
self.__interiorEdges[index].edges = [self.edges[index].subEdges[0],
self.edges[index].subEdges[1],
self.__interiorEdges[prevIndex],
self.__interiorEdges[nextIndex]]
# edge faces are the new subFaces (current and next faces), the current will be define below
# and the next will be defined on the next iteration (or already defined on the last iteration)
self.__interiorEdges[index].faces = [self.__subFaces[index],
self.__subFaces[nextIndex]]
# now reference the current edge back into the faces,
# and the edge.subEdges, and the edge.edgeVertex
# current subFace (same index as current interior edge)
# set its edges to reference the same edges used to setup the interior edge
# order will be pretty important on these steps...
self.__subFaces[index].edges = [self.edges[index].subEdges[0],
self.__interiorEdges[index],
self.__interiorEdges[prevIndex],
self.edges[prevIndex].subEdges[1]]
# just set one of the vertex edges, the other belongs to another face and will get added when that face is run
self.edges[index].edgeVertex.edges.append(self.__interiorEdges[index])
self.edges[index].subEdges[0].faces.append(self.__subFaces[index])
self.edges[index].subEdges[0].faces.append(self.__subFaces[index])
class Polygon(object):
'''
@ -165,14 +267,10 @@ class Polygon(object):
it needs to average vertices with all adjoinging faces
'''
def __init__(self, vertices, edges, faces):
self.vertices = vertices
self.edges = edges
self.faces = faces
def __getFaceNeighbors(self, testFace):
for face in self.faces:
testFace.isNeighbor(face)
def __init__(self):
self.vertices = []
self.edges = []
self.faces = []
def catmullClarkRefine(self):
'''
@ -184,126 +282,170 @@ class Polygon(object):
For each original vertex P, take the average F of all n face vertices for faces touching P, and take the average R of all n edge midvertices for edges touching P, where each edge midvertex is the average of its two endvertex vertices. Move each original vertex to the vertex
'''
# this calculates and returns the averaged vertex point
print self.faces[0].edges[0].edgeVertex()
# this returns a vertex at the face centroid
print self.faces[0].centroid
# this will get to the first neighborFace...
# each face knows its faceVertex, and all of its edgeVertices
neighborFace = self.faces[0].edges[0].neighborFace(self.faces[0])
print neighborFace.centroid
# each face knows how to subdivide and create a set of subfaces, including interior edges and setup their references correctly... <- not completely finished...
p = Polygon()
edges = []
vertices = []
faces = []
for face in self.faces:
for subFace in face.subFaces:
faces.append(subFace)
for edge in subFace.edges:
edges.append(edge)
for vertex in edge.vertices:
vertices.append(vertex)
for vertex in self.vertices:
faceVertices = []
edgeMidPoints = []
for edge in vertex.edges:
edgeMidPoints.append(edge.midPoint)
for face in edge.faces:
faceVertices.append(face.centroid)
f = sum(list(set(faceVertices)), Vertex())/len(list(set(faceVertices)))
r = sum(list(set(edgeMidPoints)), Vertex())/len(list(set(edgeMidPoints)))
p = vertex
n = len(vertex.edges)
v = (f + (2.0 * r) + (n - 3.0) * p) / n
# print v
vertex.x = v.x
vertex.y = v.y
vertex.z = v.z
# so now what.........
# (F + 2R + (n-3) P) / n
#
# F = average of all face vertices touching P
# R = average of all edge vertices touching P
# P original point
# n = number of edges connecting to P
p.faces = faces
p.vertices = vertices
p.edges = edges
# plotting these in excel seems to show the correct values (at first glace...)
# so now what.........
# (F + 2R + (n-3) P) / n
#
# F = average of all face vertices touching P
# R = average of all edge vertices touching P
# P original point
# n = face vertices or edge vertices (should be the same number)
return p
def createPolygon():
v = []
v.append(Vertex(0.0, 1.0, 0.0))
v.append(Vertex(1.0, 1.0, 0.0))
v.append(Vertex(1.0, 0.0, 0.0))
v.append(Vertex(0.0, 0.0, 0.0))
v = []
v.append(Vertex(0.0, 1.0, 0.0))
v.append(Vertex(1.0, 1.0, 0.0))
v.append(Vertex(1.0, 0.0, 0.0))
v.append(Vertex(0.0, 0.0, 0.0))
v.append(Vertex(0.0, 1.0, 1.0))
v.append(Vertex(1.0, 1.0, 1.0))
v.append(Vertex(1.0, 0.0, 1.0))
v.append(Vertex(0.0, 0.0, 1.0))
v.append(Vertex(0.0, 1.0, 1.0))
v.append(Vertex(1.0, 1.0, 1.0))
v.append(Vertex(1.0, 0.0, 1.0))
v.append(Vertex(0.0, 0.0, 1.0))
e = []
e.append(Edge())
e.append(Edge())
e.append(Edge())
e.append(Edge())
e.append(Edge())
e.append(Edge())
e.append(Edge())
e.append(Edge())
e.append(Edge())
e.append(Edge())
e.append(Edge())
e.append(Edge())
e = []
e.append(Edge())
e.append(Edge())
e.append(Edge())
e.append(Edge())
e.append(Edge())
e.append(Edge())
e.append(Edge())
e.append(Edge())
e.append(Edge())
e.append(Edge())
e.append(Edge())
e.append(Edge())
f = []
f.append(Face())
f.append(Face())
f.append(Face())
f.append(Face())
f.append(Face())
f.append(Face())
f = []
f.append(Face())
f.append(Face())
f.append(Face())
f.append(Face())
f.append(Face())
f.append(Face())
# vertex list
v[0].edges = [e[0], e[3], e[4]]
v[1].edges = [e[0], e[5], e[1]]
v[2].edges = [e[1], e[6], e[2]]
v[3].edges = [e[2], e[7], e[3]]
v[4].edges = [e[4], e[11], e[8]]
v[5].edges = [e[5], e[9], e[8]]
v[6].edges = [e[2], e[9], e[10]]
v[7].edges = [e[7], e[10], e[11]]
# vertex list
v[0].edges = [e[0], e[3], e[4]]
v[1].edges = [e[0], e[5], e[1]]
v[2].edges = [e[1], e[6], e[2]]
v[3].edges = [e[2], e[7], e[3]]
v[4].edges = [e[4], e[11], e[8]]
v[5].edges = [e[5], e[9], e[8]]
v[6].edges = [e[6], e[9], e[10]]
v[7].edges = [e[7], e[10], e[11]]
# face list
f[0].edges = [e[0], e[1], e[2], e[3]]
f[1].edges = [e[1], e[5], e[9], e[6]]
f[2].edges = [e[2], e[6], e[10], e[7]]
f[3].edges = [e[4], e[3], e[7], e[11]]
f[4].edges = [e[8], e[5], e[0], e[4]]
f[5].edges = [e[10], e[9], e[8], e[11]]
# face list
f[0].edges = [e[0], e[1], e[2], e[3]]
f[1].edges = [e[1], e[5], e[9], e[6]]
f[2].edges = [e[2], e[6], e[10], e[7]]
f[3].edges = [e[4], e[3], e[7], e[11]]
f[4].edges = [e[8], e[5], e[0], e[4]]
f[5].edges = [e[10], e[9], e[8], e[11]]
#winged edges ordered by face, then by vertex reference
e[0].vertices, e[0].faces, e[0].edges = [v[0], v[1]], [f[0], f[4]], [e[3], e[1], e[4], e[5]]
e[1].vertices, e[1].faces, e[1].edges = [v[1], v[2]], [f[0], f[1]], [e[0], e[2], e[5], e[6]]
e[2].vertices, e[2].faces, e[2].edges = [v[2], v[3]], [f[0], f[2]], [e[3], e[7], e[1], e[6]]
e[3].vertices, e[3].faces, e[3].edges = [v[3], v[0]], [f[3], f[0]], [e[4], e[7], e[0], e[2]]
e[4].vertices, e[4].faces, e[4].edges = [v[0], v[4]], [f[3], f[4]], [e[11], e[3], e[0], e[8]]
e[5].vertices, e[5].faces, e[5].edges = [v[5], v[1]], [f[4], f[1]], [e[8], e[0], e[9], e[1]]
e[6].vertices, e[6].faces, e[6].edges = [v[2], v[6]], [f[1], f[2]], [e[1], e[9], e[2], e[10]]
e[7].vertices, e[7].faces, e[7].edges = [v[7], v[3]], [f[3], f[2]], [e[11], e[3], e[10], e[2]]
e[8].vertices, e[8].faces, e[8].edges = [v[4], v[5]], [f[4], f[5]], [e[4], e[5], e[11], e[9]]
e[9].vertices, e[9].faces, e[9].edges = [v[5], v[6]], [f[1], f[5]], [e[5], e[6], e[8], e[10]]
e[10].vertices, e[10].faces, e[10].edges = [v[7], v[6]], [f[2], f[5]], [e[7], e[6], e[11], e[9]]
e[11].vertices, e[11].faces, e[11].edges = [v[4], v[7]], [f[3], f[5]], [e[4], e[7], e[8], e[10]]
#winged edges ordered by face, then by vertex reference
e[0].vertices, e[0].faces, e[0].edges = [v[0], v[1]], [f[0], f[4]], [e[3], e[1], e[4], e[5]]
e[1].vertices, e[1].faces, e[1].edges = [v[1], v[2]], [f[0], f[1]], [e[0], e[2], e[5], e[6]]
e[2].vertices, e[2].faces, e[2].edges = [v[2], v[3]], [f[0], f[2]], [e[1], e[3], e[6], e[7]]
e[3].vertices, e[3].faces, e[3].edges = [v[3], v[0]], [f[3], f[0]], [e[4], e[7], e[0], e[2]]
e[4].vertices, e[4].faces, e[4].edges = [v[0], v[4]], [f[3], f[4]], [e[11], e[3], e[0], e[8]]
e[5].vertices, e[5].faces, e[5].edges = [v[5], v[1]], [f[4], f[1]], [e[8], e[0], e[9], e[1]]
e[6].vertices, e[6].faces, e[6].edges = [v[2], v[6]], [f[1], f[2]], [e[1], e[9], e[2], e[10]]
e[7].vertices, e[7].faces, e[7].edges = [v[7], v[3]], [f[3], f[2]], [e[11], e[3], e[10], e[2]]
e[8].vertices, e[8].faces, e[8].edges = [v[4], v[5]], [f[4], f[5]], [e[4], e[5], e[11], e[9]]
e[9].vertices, e[9].faces, e[9].edges = [v[5], v[6]], [f[1], f[5]], [e[5], e[6], e[8], e[10]]
e[10].vertices, e[10].faces, e[10].edges = [v[7], v[6]], [f[2], f[5]], [e[7], e[6], e[11], e[9]]
e[11].vertices, e[11].faces, e[11].edges = [v[4], v[7]], [f[3], f[5]], [e[4], e[7], e[8], e[10]]
# just to prove to myself that the objects are the same, this is what years of pass by value have done to me...
# just to prove to myself that the objects are the same, this is what years of pass by value have done to me...
# print id(v[0].x)
# print id(e[0].vertices[0].x)
# print id(f[0].edges[0].vertices[0].x)
# print id(v[0].x)
# print id(e[0].vertices[0].x)
# print id(f[0].edges[0].vertices[0].x)
# v[0].x = 9
# v[0].x = 9
# print id(v[0].x)
# print id(e[0].vertices[0].x)
# print id(f[0].edges[0].vertices[0].x)
# print id(v[0].x)
# print id(e[0].vertices[0].x)
# print id(f[0].edges[0].vertices[0].x)
# print v[0].x
# print e[0].vertices[0].x
# print f[0].edges[0].vertices[0].x
# print v[0].x
# print e[0].vertices[0].x
# print f[0].edges[0].vertices[0].x
p = Polygon()
p.vertices = v
p.edges = e
p.faces = f
return p
polygon = Polygon(v, e, f)
polygon.catmullClarkRefine()
polygon = createPolygon()
newPolygon = polygon.catmullClarkRefine()
from numpy import *
import pylab
import mpl_toolkits.mplot3d.axes3d as p3
# from numpy import *
# import pylab
# import mpl_toolkits.mplot3d.axes3d as p3
# fig = pylab.figure()
# ax = p3.Axes3D(fig)
# ax.plot_wireframe(xs, ys, zs)
# ax.set_xlabel('X')
# ax.set_ylabel('Y')
# ax.set_zlabel('Z')
# pylab.show()
# v4 = Vertex(4, 0, 0, 1)
# v5 = Vertex(5, 1, 0, 1)
# v6 = Vertex(6, 0, 1, 1)
# v7 = Vertex(7, 1, 1, 1)
fig = pylab.figure()
ax = p3.Axes3D(fig)
for edge in newPolygon.edges:
xs = [vertex.x for vertex in edge.vertices]
ys = [vertex.y for vertex in edge.vertices]
zs = [vertex.z for vertex in edge.vertices]
ax.plot_wireframe(xs, ys, zs)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
pylab.show()