smbinterp/interp/tools.py

77 lines
1.6 KiB
Python

import os
import inspect
import numpy as np
import logging
log = logging.getLogger("interp")
def rms(errors):
"""
root mean square calculation
"""
r = 0.0
for i in errors:
r += np.power(i, 2)
r = np.sqrt(r / len(errors))
return r
def baker_exact_2D(X):
"""
the exact function (2D) used from baker's article (for testing)
"""
x ,y = X
answer = np.power((np.sin(x * np.pi) * np.cos(y * np.pi)), 2)
log.debug(answer)
return answer
def friendly_exact_2D(X):
"""
A friendlier 2D func
"""
x ,y = X
answer = 1.0 + x*x + y*y
log.debug(answer)
return answer
def baker_exact_3D(X):
"""
the exact function (3D) used from baker's article (for testing)
"""
x = X[0]
y = X[1]
z = X[2]
answer = np.power((np.sin(x * np.pi / 2.0) * np.sin(y * np.pi / 2.0) * np.sin(z * np.pi / 2.0)), 2)
log.debug(answer)
return answer
def friendly_exact_3D(X):
x,y,z = X
return 1 + x*x + y*y + z*z
def improved_answer(answer, exact):
if not answer['error']:
# was probably just a linear interpolation
return False
log.debug('qlin: %s' % answer['qlin'])
log.debug('error: %s' % answer['error'])
log.debug('final: %s' % answer['final'])
log.debug('exact: %s' % exact)
if np.abs(answer['final'] - exact) <= np.abs(answer['qlin'] - exact):
log.debug(":) improved result")
return True
else:
log.debug(":( damaged result")
return False
def improved(qlin, err, final, exact):
if np.abs(final - exact) <= np.abs(qlin - exact):
return True
else:
return False
def percent_improvement(answer, exact):
return np.abs(answer['error']) / exact