1af176a6e0
also did some pep8/pyflakes cleanup
199 lines
5.1 KiB
Python
199 lines
5.1 KiB
Python
from collections import namedtuple
|
|
from functools import wraps
|
|
import itertools
|
|
|
|
import numpy as np
|
|
|
|
import interp
|
|
|
|
AGGRESSIVE_ERROR_SOLVE = True
|
|
RAISE_PATHOLOGICAL_EXCEPTION = False
|
|
|
|
__version__ = interp.__version__
|
|
|
|
Answer = namedtuple("Answer", ['qlin', 'final', 'error', 'abc'])
|
|
|
|
|
|
def get_phis(X, R):
|
|
"""
|
|
The get_phis function is used to get barycentric coordonites for a
|
|
point on a triangle or tetrahedron (Equation (*\ref{eq:qlinarea}*))
|
|
|
|
in 2D:
|
|
|
|
X - the destination point (2D)
|
|
X = [0,0]
|
|
R - the three points that make up the 2-D triangular simplex
|
|
R = [[-1, -1], [0, 2], [1, -1]]
|
|
|
|
this will return [0.333, 0.333, 0.333]
|
|
|
|
|
|
in 3D:
|
|
|
|
X - the destination point (3D)
|
|
X = [0,0,0]
|
|
R - the four points that make up the 3-D simplex (tetrahedron)
|
|
R = [
|
|
[ 0.0000, 0.0000, 1.0000],
|
|
[ 0.9428, 0.0000, -0.3333],
|
|
[-0.4714, 0.8165, -0.3333],
|
|
[-0.4714, -0.8165, -0.3333],
|
|
]
|
|
|
|
this will return [0.25, 0.25, 0.25, 0.25]
|
|
"""
|
|
|
|
# equations (*\ref{eq:lin3d}*) and (*\ref{eq:lin2d}*)
|
|
if len(X) == 2:
|
|
A = np.array([
|
|
[1, 1, 1],
|
|
[R[0][0], R[1][0], R[2][0]],
|
|
[R[0][1], R[1][1], R[2][1]],
|
|
])
|
|
b = np.array([1, X[0], X[1]])
|
|
elif len(X) == 3:
|
|
A = np.array([
|
|
[1, 1, 1, 1],
|
|
[R[0][0], R[1][0], R[2][0], R[3][0]],
|
|
[R[0][1], R[1][1], R[2][1], R[3][1]],
|
|
[R[0][2], R[1][2], R[2][2], R[3][2]],
|
|
])
|
|
b = np.array([1, X[0], X[1], X[2]])
|
|
else:
|
|
raise Exception("inapropriate demension on X")
|
|
phi = np.linalg.solve(A, b)
|
|
return phi
|
|
|
|
|
|
def qlinear(X, R, q):
|
|
"""
|
|
this calculates the linear portion of q from R to X
|
|
|
|
This is equation (*\ref{eq:qlinbasis}*)
|
|
|
|
X = destination point
|
|
R = a inter.grid object; must have R.points and R.q
|
|
"""
|
|
|
|
phis = get_phis(X, R)
|
|
qlin = np.sum([q_i * phi_i for q_i, phi_i in zip(q, phis)])
|
|
|
|
return phis, qlin
|
|
|
|
|
|
def get_error(phi, R, R_q, S, S_q, order=2):
|
|
"""
|
|
Calculate the error approximation terms, returning the unknowns
|
|
a,b, and c in equation (*\ref{eq:quadratic2d}*).
|
|
"""
|
|
B = [] # equation ((*\ref{eq:B2d}*)
|
|
w = [] # equation ((*\ref{eq:w}*)
|
|
|
|
cur_pattern = pattern(len(phi), order)
|
|
|
|
for (s, cur_q) in zip(S, S_q):
|
|
cur_phi, cur_qlin = qlinear(s, R, R_q)
|
|
l = []
|
|
for i in cur_pattern:
|
|
cur_sum = cur_phi[i[0]]
|
|
for j in i[1:]:
|
|
cur_sum *= cur_phi[j]
|
|
l.append(cur_sum)
|
|
|
|
B.append(l)
|
|
w.append(cur_q - cur_qlin)
|
|
|
|
B = np.array(B)
|
|
w = np.array(w)
|
|
|
|
A = np.dot(B.T, B)
|
|
b = np.dot(B.T, w)
|
|
|
|
try:
|
|
abc = np.linalg.solve(A, b)
|
|
except np.linalg.LinAlgError:
|
|
if not AGGRESSIVE_ERROR_SOLVE:
|
|
return None, None
|
|
abc = np.dot(np.linalg.pinv(A), b)
|
|
|
|
error_term = 0.0
|
|
for (a, i) in zip(abc, cur_pattern):
|
|
cur_sum = a
|
|
for j in i:
|
|
cur_sum *= phi[j]
|
|
error_term += cur_sum
|
|
|
|
return error_term, abc
|
|
|
|
|
|
def interpolate(X, R, R_q, S=None, S_q=None, order=2):
|
|
"""
|
|
This is the main function to call to get an interpolation to X from the
|
|
input meshes
|
|
|
|
X -- the destination point
|
|
|
|
R = Simplex
|
|
R_q = q values at R
|
|
S = extra points
|
|
S_q = q values at S
|
|
|
|
order - order of interpolation - 1
|
|
"""
|
|
|
|
qlin = None
|
|
error_term = None
|
|
final = None
|
|
abc = {}
|
|
|
|
# calculate values only for the simplex triangle
|
|
phi, qlin = qlinear(X, R, R_q)
|
|
|
|
if order in xrange(2, 11) and S is not None:
|
|
error_term, abc = get_error(phi, R, R_q, S, S_q, order)
|
|
|
|
# if a pathological vertex configuration was encountered and
|
|
# AGGRESSIVE_ERROR_SOLVE is False, get_error will return (None, None)
|
|
# indicating that only linear interpolation should be performed
|
|
if (error_term is None) and (abc is None):
|
|
if RAISE_PATHOLOGICAL_EXCEPTION:
|
|
raise np.linalg.LinAlgError("Pathological Vertex Config")
|
|
else:
|
|
final = qlin + error_term
|
|
elif order not in xrange(2, 11):
|
|
raise Exception('unsupported order "%d" for baker method' % order)
|
|
|
|
return Answer(qlin=qlin, error=error_term, final=final, abc=abc)
|
|
|
|
|
|
def memoize(f):
|
|
"""
|
|
for more information on what I'm doing here, please read:
|
|
http://en.wikipedia.org/wiki/Memoize
|
|
"""
|
|
cache = {}
|
|
|
|
@wraps(f)
|
|
def memf(simplex_size, nu):
|
|
x = (simplex_size, nu)
|
|
if x not in cache:
|
|
cache[x] = f(simplex_size, nu)
|
|
return cache[x]
|
|
return memf
|
|
|
|
|
|
@memoize
|
|
def pattern(simplex_size, nu):
|
|
"""
|
|
This function returns the pattern requisite to compose the error
|
|
approximation function, and the matrix B.
|
|
"""
|
|
|
|
r = []
|
|
for i in itertools.product(xrange(simplex_size), repeat=nu):
|
|
if len(set(i)) != 1:
|
|
r.append(tuple(sorted(i)))
|
|
unique_r = list(set(r))
|
|
return unique_r
|