smbinterp/interp/baker/__init__.py

221 lines
5.1 KiB
Python

import sys
import numpy as np
from functools import wraps
import itertools
import interp
import logging
log = logging.getLogger('interp')
def get_phis(X, R):
"""
The get_phis function is used to get barycentric coordonites for a
point on a triangle or tetrahedron. This is equation (*\ref{eq:qlinarea}*)
in 2D:
X - the destination point (2D)
X = [0,0]
R - the three points that make up the 2-D triangular simplex
R = [[-1, -1], [0, 2], [1, -1]]
this will return [0.333, 0.333, 0.333]
in 3D:
X - the destination point (3D)
X = [0,0,0]
R - the four points that make up the 3-D simplex (tetrahedron)
R = [
[ 0.0000, 0.0000, 1.0000],
[ 0.9428, 0.0000, -0.3333],
[-0.4714, 0.8165, -0.3333],
[-0.4714, -0.8165, -0.3333],
]
this will return [0.25, 0.25, 0.25, 0.25]
"""
# equations (*\ref{eq:lin3d}*) and (*\ref{eq:lin2d}*)
if len(X) == 2:
log.debug("running 2D")
A = np.array([
[ 1, 1, 1],
[R[0][0], R[1][0], R[2][0]],
[R[0][1], R[1][1], R[2][1]],
])
b = np.array([ 1,
X[0],
X[1]
])
elif len(X) == 3:
log.debug("running 3D")
A = np.array([
[ 1, 1, 1, 1 ],
[R[0][0], R[1][0], R[2][0], R[3][0]],
[R[0][1], R[1][1], R[2][1], R[3][1]],
[R[0][2], R[1][2], R[2][2], R[3][2]],
])
b = np.array([ 1,
X[0],
X[1],
X[2]
])
else:
raise Exception("inapropriate demension on X")
try:
phi = np.linalg.solve(A,b)
except np.linalg.LinAlgError as e:
msg = "calculation of phis yielded a linearly dependant system (%s)" % e
log.error(msg)
# raise Exception(msg)
phi = np.dot(np.linalg.pinv(A), b)
log.debug("phi: %s", phi)
return phi
def qlinear(X, R):
"""
this calculates the linear portion of q from R to X
This is equation (*\ref{eq:qlinbasis}*)
X = destination point
R = a inter.grid object; must have R.points and R.q
"""
phis = get_phis(X, R.verts)
qlin = np.sum([q_i * phi_i for q_i, phi_i in zip(R.q, phis)])
log.debug("phis: %s", phis)
log.debug("qlin: %s", qlin)
return phis, qlin
def get_error(phi, R, S, order = 2):
"""
Calculate the error approximation terms, returning the unknowns
a,b, and c in equation (*\ref{eq:quadratic2d}*).
"""
B = [] # equation ((*\ref{eq:B2d}*)
w = [] # equation ((*\ref{eq:w}*)
cur_pattern = pattern(len(phi), order)
log.info("pattern: %s" % cur_pattern)
for (s,q) in zip(S.verts, S.q):
cur_phi, cur_qlin = qlinear(s, R)
l = []
for i in cur_pattern:
cur_sum = cur_phi[i[0]]
for j in i[1:]:
cur_sum *= cur_phi[j]
l.append(cur_sum)
B.append(l)
w.append(q - cur_qlin)
log.info("B: %s" % B)
log.info("w: %s" % w)
B = np.array(B)
w = np.array(w)
A = np.dot(B.T, B)
b = np.dot(B.T, w)
try:
abc = np.linalg.solve(A,b)
except np.linalg.LinAlgError as e:
log.error("linear calculation went bad, resorting to np.linalg.pinv: %s" % e)
abc = np.dot(np.linalg.pinv(A), b)
error_term = 0.0
for (a, i) in zip(abc, cur_pattern):
cur_sum = a
for j in i:
cur_sum *= phi[j]
error_term += cur_sum
log.debug("error_term: %s" % error_term)
return error_term, abc
def run_baker(X, R, S, order=2):
"""
This is the main function to call to get an interpolation to X from the
input meshes
X -- the destination point
R = Simplex
S = extra points
"""
log.debug("order = %d" % order)
log.debug("extra points = %d" % len(S.verts))
answer = {
'qlin': None,
'error': None,
'final': None,
}
# calculate values only for the simplex triangle
phi, qlin = qlinear(X, R)
if order == 1:
answer['qlin'] = qlin
answer['final'] = qlin
return answer
elif order in xrange(2,11):
error_term, abc = get_error(phi, R, S, order)
else:
raise Exception('unsupported order "%d" for baker method' % order)
q_final = qlin + error_term
answer['qlin' ] = qlin
answer['error'] = error_term
answer['final'] = q_final
answer['abc' ] = abc
log.debug(answer)
return answer
def memoize(f):
"""
for more information on what I'm doing here, please read:
http://en.wikipedia.org/wiki/Memoize
"""
cache = {}
@wraps(f)
def memf(simplex_size, nu):
x = (simplex_size, nu)
if x not in cache:
log.debug("adding to cache: %s", x)
cache[x] = f(simplex_size, nu)
return cache[x]
return memf
@memoize
def pattern(simplex_size, nu):
"""
This function returns the pattern requisite to compose the error
approximation function, and the matrix B.
"""
log.debug("pattern: simplex: %d, order: %d" % (simplex_size, nu))
r = []
for i in itertools.product(xrange(simplex_size), repeat = nu):
if len(set(i)) !=1:
r.append(tuple(sorted(i)))
unique_r = list(set(r))
return unique_r