smbinterp/interp/tools.py

89 lines
1.9 KiB
Python

import os
import inspect
import numpy as np
import logging
log = logging.getLogger("interp")
def rms(errors):
"""
root mean square calculation
"""
# slow pure python way for reference:
# r = 0.0
# for i in errors:
# r += np.power(i, 2)
# r = np.sqrt(r / len(errors))
# return r
return np.sqrt((errors**2).mean())
def baker_exact_2D(X):
"""
the exact function (2D) used from baker's article (for testing, slightly
modified)
"""
x ,y = X
# TODO: this is not baker's function!! this is:
# np.power(np.sin(x*np.pi/2.0) * np.sin(y*np.pi/2.0),2)
answer = np.power((np.sin(x * np.pi) * np.cos(y * np.pi)), 2)
log.debug(answer)
return answer
def friendly_exact_2D(X):
"""
A friendlier 2D func
"""
x ,y = X
answer = 1.0 + x*x + y*y
log.debug(answer)
return answer
def baker_exact_3D(X):
"""
the exact function (3D) used from baker's article (for testing)
"""
x = X[0]
y = X[1]
z = X[2]
answer = np.power((np.sin(x * np.pi / 2.0) * np.sin(y * np.pi / 2.0) * np.sin(z * np.pi / 2.0)), 2)
log.debug(answer)
return answer
def friendly_exact_3D(X):
x,y,z = X
return 1 + x*x + y*y + z*z
def scipy_exact_2D(X):
x,y = X
return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2
def improved_answer(answer, exact):
if not answer['error']:
# was probably just a linear interpolation
return False
log.debug('qlin: %s' % answer['qlin'])
log.debug('error: %s' % answer['error'])
log.debug('final: %s' % answer['final'])
log.debug('exact: %s' % exact)
if np.abs(answer['final'] - exact) <= np.abs(answer['qlin'] - exact):
log.debug(":) improved result")
return True
else:
log.debug(":( damaged result")
return False
def improved(qlin, err, final, exact):
if np.abs(final - exact) <= np.abs(qlin - exact):
return True
else:
return False
def percent_improvement(answer, exact):
return np.abs(answer['error']) / exact