177 lines
5.0 KiB
Python
177 lines
5.0 KiB
Python
import pickle
|
|
|
|
from itertools import combinations
|
|
from collections import defaultdict
|
|
|
|
import numpy as np
|
|
from scipy.spatial import KDTree
|
|
|
|
from interp.grid import grid
|
|
from interp.grid.simplex import cell
|
|
from interp.tools import exact_func, exact_func_3D
|
|
|
|
|
|
|
|
THREE_NODE_TRIANGLE = 2
|
|
FOUR_NODE_TET = 4
|
|
|
|
EDGES_FOR_FACE_CONNECTIVITY = 2
|
|
EDGES_FOR_VOLUME_CONNECTIVITY = 3
|
|
|
|
|
|
|
|
class gmsh_grid(grid):
|
|
|
|
def __init__(self, filename):
|
|
"""
|
|
construct an interp.grid.grid-compliant grid
|
|
object out of a 2D gmsh file
|
|
"""
|
|
|
|
gmsh_file = open(filename, 'r')
|
|
|
|
|
|
gmsh_file.readline() # $MeshFormat
|
|
format = gmsh_file.readline()
|
|
gmsh_file.readline() # $EndMeshFormat
|
|
|
|
gmsh_file.readline() # $Nodes
|
|
|
|
node_count = int(gmsh_file.readline())
|
|
|
|
self.verts = np.empty((node_count, 3))
|
|
self.q = np.empty(node_count)
|
|
|
|
for i in xrange(node_count):
|
|
cur_line = gmsh_file.readline()
|
|
(index, x,y,z) = cur_line.split()
|
|
index = int(index) - 1
|
|
|
|
self.verts[i][0] = float(x)
|
|
self.verts[i][1] = float(y)
|
|
self.verts[i][2] = float(z)
|
|
self.q[i] = exact_func(self.verts[i])
|
|
|
|
|
|
grid.__init__(self)
|
|
self.tree = KDTree(self.verts)
|
|
gmsh_file.readline() # $EndNodes
|
|
gmsh_file.readline() # $Elements
|
|
|
|
# temporary dict used to compute cell connectivity
|
|
neighbors = {}
|
|
|
|
element_count = int(gmsh_file.readline())
|
|
for i in xrange(element_count):
|
|
cur_line = gmsh_file.readline()
|
|
cur_line = cur_line.split()
|
|
cur_cell_index, node_type, rest = (int(cur_line[0]),
|
|
int(cur_line[1]),
|
|
[int(j) for j in cur_line[2:]])
|
|
|
|
if(node_type == THREE_NODE_TRIANGLE):
|
|
points_for_cur_cell = [i-1 for i in rest[rest[0]+1:]]
|
|
|
|
cur_cell = cell(cur_cell_index)
|
|
|
|
for cur_point in points_for_cur_cell:
|
|
self.cells_for_vert[cur_point].append(cur_cell)
|
|
|
|
cur_cell.verts = points_for_cur_cell
|
|
|
|
self.cells[cur_cell_index] = cur_cell
|
|
edges = [tuple(sorted(i)) for i in combinations(points_for_cur_cell, EDGES_FOR_FACE_CONNECTIVITY)]
|
|
|
|
# edge is two verts
|
|
for edge in edges:
|
|
if edge in neighbors:
|
|
neighbors[edge].append(cur_cell_index)
|
|
else:
|
|
neighbors[edge] = [cur_cell_index]
|
|
|
|
for k,v in neighbors.iteritems():
|
|
if len(v) > 1:
|
|
self.cells[v[0]].add_neighbor(self.cells[v[1]])
|
|
self.cells[v[1]].add_neighbor(self.cells[v[0]])
|
|
|
|
def dump_to_blender_files(self, pfile = '/tmp/points.p', ffile = '/tmp/cells.p'):
|
|
pickle.dump([(p[0], p[1], p[2]) for p in self.verts], open(pfile, 'w'))
|
|
pickle.dump([f.verts for f in self.cells.itervalues()], open(ffile, 'w'))
|
|
|
|
class gmsh_grid3D(grid):
|
|
|
|
def __init__(self, filename):
|
|
"""
|
|
construct an interp.grid.grid-compliant grid
|
|
object out of a 3D gmsh file
|
|
"""
|
|
|
|
gmsh_file = open(filename, 'r')
|
|
|
|
|
|
gmsh_file.readline() # $MeshFormat
|
|
format = gmsh_file.readline()
|
|
gmsh_file.readline() # $EndMeshFormat
|
|
|
|
gmsh_file.readline() # $Nodes
|
|
|
|
node_count = int(gmsh_file.readline())
|
|
|
|
self.verts = np.empty((node_count, 3))
|
|
self.q = np.empty(node_count)
|
|
|
|
for i in xrange(node_count):
|
|
cur_line = gmsh_file.readline()
|
|
(index, x,y,z) = cur_line.split()
|
|
index = int(index) - 1
|
|
|
|
self.verts[i][0] = float(x)
|
|
self.verts[i][1] = float(y)
|
|
self.verts[i][2] = float(z)
|
|
self.q[i] = exact_func_3D(self.verts[i])
|
|
|
|
|
|
grid.__init__(self)
|
|
self.tree = KDTree(self.verts)
|
|
gmsh_file.readline() # $EndNodes
|
|
gmsh_file.readline() # $Elements
|
|
|
|
# temporary dict used to compute cell connectivity
|
|
neighbors = {}
|
|
|
|
element_count = int(gmsh_file.readline())
|
|
for i in xrange(element_count):
|
|
cur_line = gmsh_file.readline()
|
|
cur_line = cur_line.split()
|
|
cur_cell_index, node_type, rest = (int(cur_line[0]),
|
|
int(cur_line[1]),
|
|
[int(j) for j in cur_line[2:]])
|
|
|
|
if(node_type == FOUR_NODE_TET):
|
|
points_for_cur_cell = [i-1 for i in rest[rest[0]+1:]]
|
|
|
|
cur_cell = cell(cur_cell_index)
|
|
|
|
for cur_point in points_for_cur_cell:
|
|
self.cells_for_vert[cur_point].append(cur_cell)
|
|
|
|
cur_cell.verts = points_for_cur_cell
|
|
|
|
self.cells[cur_cell_index] = cur_cell
|
|
edges = [tuple(sorted(i)) for i in combinations(points_for_cur_cell, EDGES_FOR_VOLUME_CONNECTIVITY)]
|
|
|
|
for edge in edges:
|
|
if edge in neighbors:
|
|
neighbors[edge].append(cur_cell_index)
|
|
else:
|
|
neighbors[edge] = [cur_cell_index]
|
|
|
|
for k,v in neighbors.iteritems():
|
|
if len(v) > 1:
|
|
self.cells[v[0]].add_neighbor(self.cells[v[1]])
|
|
self.cells[v[1]].add_neighbor(self.cells[v[0]])
|
|
|
|
def dump_to_blender_files(self, pfile = '/tmp/points.p', ffile = '/tmp/cells.p'):
|
|
pickle.dump([(p[0], p[1], p[2]) for p in self.verts], open(pfile, 'w'))
|
|
pickle.dump([f.verts for f in self.cells.itervalues()], open(ffile, 'w'))
|