from interp.grid.delaunay import grid as basegrid from interp.tools import exact_func, log import numpy as np class grid(basegrid): def __init__(self, verts, q): basegrid.__init__(self, verts, q) class rect_grid(grid): def __init__(self, xres = 5, yres = 5): xmin = -1.0 xmax = 1.0 xspan = xmax - xmin xdel = xspan / float(xres - 1) ymin = -1.0 ymay = 1.0 yspan = ymay - ymin ydel = yspan / float(yres - 1) verts = [] q = [] for x in xrange(xres): cur_x = xmin + (x * xdel) for y in xrange(yres): cur_y = ymin + (y * ydel) verts.append([cur_x, cur_y]) q.append(exact_func((cur_x, cur_y))) grid.__init__(self, verts, q) class random_grid(rect_grid): def __init__(self, num_verts = 10): log.debug("number of verts: %d" % num_verts) verts = [] q = [] r = np.random appx_side_res = int(np.sqrt(num_verts)) log.debug("appx_side_res: %d" % appx_side_res) delta = 1.0 / float(appx_side_res) for x in xrange(appx_side_res + 1): cur_x = x * delta for cur_y in (0, 1): new_point = [cur_x, cur_y] verts.append(new_point) q.append(exact_func(new_point)) for y in xrange(appx_side_res + 1): cur_y = y * delta for cur_x in (0, 1): new_point = [cur_x, cur_y] verts.append(new_point) q.append(exact_func(new_point)) for i in xrange(num_verts): cur_x = r.rand() cur_y = r.rand() verts.append([cur_x, cur_y]) q.append( exact_func( (cur_x, cur_y) ) ) grid.__init__(self, verts, q) self.verts = np.array(self.verts) self.q = np.array(self.q)