polish for inclusion into thesis
This commit is contained in:
parent
14fef76b2b
commit
c682b12bea
@ -2,7 +2,7 @@
|
||||
|
||||
import sys
|
||||
import time
|
||||
import interp.bootstrap
|
||||
|
||||
from interp.cluster import QueueManager, get_qs
|
||||
from optparse import OptionParser
|
||||
|
||||
|
@ -4,21 +4,19 @@ import sys
|
||||
import os
|
||||
|
||||
import time
|
||||
|
||||
import shelve
|
||||
from progressbar import *
|
||||
from collections import defaultdict
|
||||
from optparse import OptionParser
|
||||
|
||||
import numpy as np
|
||||
|
||||
import interp.bootstrap
|
||||
|
||||
import logging
|
||||
log = logging.getLogger("interp")
|
||||
|
||||
import numpy as np
|
||||
|
||||
from interp.cluster import QueueManager, get_qs
|
||||
|
||||
from progressbar import *
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = OptionParser(usage = "usage: %s [options] <server> <interp count>")
|
||||
|
||||
|
@ -11,7 +11,6 @@ import datetime
|
||||
|
||||
import numpy as np
|
||||
|
||||
import interp.bootstrap
|
||||
from interp.grid.gmsh import ggrid
|
||||
from interp.tools import baker_exact_3D as exact
|
||||
|
||||
|
@ -10,8 +10,6 @@ import pickle
|
||||
|
||||
import numpy as np
|
||||
|
||||
import interp.bootstrap
|
||||
|
||||
from interp.cluster import QueueManager, get_qs
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -11,37 +11,35 @@ log = logging.getLogger('interp')
|
||||
|
||||
def get_phis(X, R):
|
||||
"""
|
||||
The get_phis function is used to get barycentric coordonites for a point on
|
||||
a triangle or tetrahedron:
|
||||
|
||||
The get_phis function is used to get barycentric coordonites for a
|
||||
point on a triangle or tetrahedron. This is equation (*\ref{eq:qlinarea}*)
|
||||
|
||||
in 2D:
|
||||
|
||||
X -- the destination point (2D)
|
||||
X - the destination point (2D)
|
||||
X = [0,0]
|
||||
r -- the three points that make up the containing triangular simplex (2D)
|
||||
r = [[-1, -1], [0, 2], [1, -1]]
|
||||
R - the three points that make up the 2-D triangular simplex
|
||||
R = [[-1, -1], [0, 2], [1, -1]]
|
||||
|
||||
this will return [0.333, 0.333, 0.333]
|
||||
|
||||
|
||||
in 3D:
|
||||
|
||||
X -- the destination point (3D)
|
||||
X - the destination point (3D)
|
||||
X = [0,0,0]
|
||||
R -- the four points that make up the containing simplex, tetrahedron (3D)
|
||||
R - the four points that make up the 3-D simplex (tetrahedron)
|
||||
R = [
|
||||
[0.0, 0.0, 1.0],
|
||||
[0.94280904333606508, 0.0, -0.3333333283722672],
|
||||
[-0.47140452166803232, 0.81649658244673617, -0.3333333283722672],
|
||||
[-0.47140452166803298, -0.81649658244673584, -0.3333333283722672],
|
||||
[ 0.0000, 0.0000, 1.0000],
|
||||
[ 0.9428, 0.0000, -0.3333],
|
||||
[-0.4714, 0.8165, -0.3333],
|
||||
[-0.4714, -0.8165, -0.3333],
|
||||
]
|
||||
|
||||
this will return [0.25, 0.25, 0.25, 0.25]
|
||||
"""
|
||||
|
||||
# baker: eq 7
|
||||
# TODO: perhaps also test len(R[0]) .. ?
|
||||
# equations (*\ref{eq:lin3d}*) and (*\ref{eq:lin2d}*)
|
||||
if len(X) == 2:
|
||||
log.debug("running 2D")
|
||||
A = np.array([
|
||||
@ -85,7 +83,7 @@ def qlinear(X, R):
|
||||
"""
|
||||
this calculates the linear portion of q from R to X
|
||||
|
||||
also, this is baker eq 3
|
||||
This is equation (*\ref{eq:qlinbasis}*)
|
||||
|
||||
X = destination point
|
||||
R = a inter.grid object; must have R.points and R.q
|
||||
@ -100,9 +98,12 @@ def qlinear(X, R):
|
||||
return phis, qlin
|
||||
|
||||
def get_error(phi, R, S, order = 2):
|
||||
#TODO: change the equation names in the comments
|
||||
B = [] # baker eq 9
|
||||
w = [] # baker eq 11
|
||||
"""
|
||||
Calculate the error approximation terms, returning the unknowns
|
||||
a,b, and c in equation (*\ref{eq:quadratic2d}*).
|
||||
"""
|
||||
B = [] # equation ((*\ref{eq:B2d}*)
|
||||
w = [] # equation ((*\ref{eq:w}*)
|
||||
|
||||
cur_pattern = pattern(len(phi), order)
|
||||
log.info("pattern: %s" % cur_pattern)
|
||||
@ -150,8 +151,7 @@ def run_baker(X, R, S, order=2):
|
||||
This is the main function to call to get an interpolation to X from the
|
||||
input meshes
|
||||
|
||||
X -- the destination point (2D)
|
||||
X = [0,0]
|
||||
X -- the destination point
|
||||
|
||||
R = Simplex
|
||||
S = extra points
|
||||
@ -190,9 +190,7 @@ def run_baker(X, R, S, order=2):
|
||||
|
||||
def memoize(f):
|
||||
"""
|
||||
for more information on what I'm doing here,
|
||||
please read:
|
||||
|
||||
for more information on what I'm doing here, please read:
|
||||
http://en.wikipedia.org/wiki/Memoize
|
||||
"""
|
||||
cache = {}
|
||||
|
@ -20,8 +20,9 @@ class grid(object):
|
||||
"""
|
||||
verts = array of arrays (if passed in, will convert to numpy.array)
|
||||
[
|
||||
[x0,y0],
|
||||
[x1,y1], ...
|
||||
[x0,y0 <, z0>],
|
||||
[x1,y1 <, z1>],
|
||||
...
|
||||
]
|
||||
|
||||
q = array (1D) of physical values
|
||||
@ -97,10 +98,9 @@ class grid(object):
|
||||
"""
|
||||
this returns two grid objects: R and S.
|
||||
|
||||
R is a grid object that is supposedly a containing simplex around point X
|
||||
R is a grid object that is a containing simplex around point X
|
||||
|
||||
S is S_j from baker's paper : some verts from all point that are not the
|
||||
simplex
|
||||
S : some verts from all points that are not the simplex
|
||||
"""
|
||||
simplex_size = self.dim + 1
|
||||
log.debug("extra verts: %d" % extra_points)
|
||||
@ -228,8 +228,9 @@ class cell(object):
|
||||
X = point of interest
|
||||
G = corrensponding grid object (G.verts)
|
||||
|
||||
because of the way i'm storing things, a cell simply stores indicies, and
|
||||
so one must pass in a reference to the grid object containing real verts.
|
||||
because of the way i'm storing things, a cell simply stores indicies,
|
||||
and so one must pass in a reference to the grid object containing real
|
||||
verts.
|
||||
|
||||
this simply calls grid.simplex.contains
|
||||
"""
|
||||
@ -255,10 +256,6 @@ def contains(X, R):
|
||||
tests if X (point) is in R
|
||||
|
||||
R is a simplex, represented by a list of n-degree coordinates
|
||||
|
||||
it now correctly checks for 2/3-D verts
|
||||
|
||||
TODO: write unit test ...
|
||||
"""
|
||||
phis = get_phis(X, R)
|
||||
|
||||
|
@ -51,9 +51,6 @@ class dgrid(basegrid):
|
||||
def construct_connectivity(self):
|
||||
"""
|
||||
a call to this method prepares the internal connectivity structure.
|
||||
|
||||
this is part of the __init__ for a interp.grid.delaunay.grid, but can be
|
||||
called from any grid object
|
||||
"""
|
||||
log.info('start')
|
||||
qdelaunay_string = get_qdelaunay_dump_str(self)
|
||||
|
@ -1,14 +0,0 @@
|
||||
def parse_qhull_file(filename, verbose=False):
|
||||
f = open(filename, 'r')
|
||||
|
||||
if verbose:
|
||||
print 'filename: ', filename
|
||||
degree = int(f.readline().strip())
|
||||
print "degree:", degree
|
||||
print "number of points", f.readline().strip()
|
||||
|
||||
verts = []
|
||||
for p in f:
|
||||
v = [float(i) for i in p.strip().split()]
|
||||
verts.append(v)
|
||||
return verts
|
@ -1,6 +1,5 @@
|
||||
import os
|
||||
|
||||
import inspect
|
||||
import numpy as np
|
||||
|
||||
import logging
|
||||
@ -27,8 +26,6 @@ def baker_exact_2D(X):
|
||||
"""
|
||||
x ,y = X
|
||||
|
||||
# TODO: this is not baker's function!! this is:
|
||||
# np.power(np.sin(x*np.pi/2.0) * np.sin(y*np.pi/2.0),2)
|
||||
answer = np.power((np.sin(x * np.pi) * np.cos(y * np.pi)), 2)
|
||||
log.debug(answer)
|
||||
return answer
|
||||
@ -83,6 +80,3 @@ def improved(qlin, err, final, exact):
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def percent_improvement(answer, exact):
|
||||
return np.abs(answer['error']) / exact
|
||||
|
Loading…
Reference in New Issue
Block a user