updated library files so that i don't have to edit the __init__.py files
--HG-- rename : lib/baker/__init__.py => lib/baker/baker.py rename : lib/grid/__init__.py => lib/grid/grid.py
This commit is contained in:
parent
b9ea6a3ac2
commit
a2d7b3f063
@ -1,163 +1 @@
|
|||||||
import numpy as np
|
from baker import *
|
||||||
import sys
|
|
||||||
|
|
||||||
from baker.tools import smberror
|
|
||||||
|
|
||||||
def get_phis(X, R):
|
|
||||||
"""
|
|
||||||
The get_phis function is used to get barycentric coordonites for a point on a triangle.
|
|
||||||
|
|
||||||
X -- the destination point (2D)
|
|
||||||
X = [0,0]
|
|
||||||
r -- the three points that make up the triangular simplex (2D)
|
|
||||||
r = [[-1, -1], [0, 2], [1, -1]]
|
|
||||||
|
|
||||||
this will return [0.333, 0.333, 0.333]
|
|
||||||
"""
|
|
||||||
|
|
||||||
# baker: eq 7
|
|
||||||
A = np.array([
|
|
||||||
[ 1, 1, 1],
|
|
||||||
[R[0][0], R[1][0], R[2][0]],
|
|
||||||
[R[0][1], R[1][1], R[2][1]],
|
|
||||||
])
|
|
||||||
b = np.array([ 1,
|
|
||||||
X[0],
|
|
||||||
X[1]
|
|
||||||
])
|
|
||||||
try:
|
|
||||||
phi = np.linalg.solve(A,b)
|
|
||||||
except:
|
|
||||||
print >> sys.stderr, "warning: get_phis: calculation of phis yielded a linearly dependant system"
|
|
||||||
raise smberror('get_phis')
|
|
||||||
phi = np.dot(np.linalg.pinv(A), b)
|
|
||||||
|
|
||||||
return phi
|
|
||||||
|
|
||||||
def get_phis_3D(X, r):
|
|
||||||
"""
|
|
||||||
The get_phis function is used to get barycentric coordonites for a point on a triangle.
|
|
||||||
|
|
||||||
X -- the destination point (3D)
|
|
||||||
X = [0,0,0]
|
|
||||||
r -- the four points that make up the tetrahedron (3D)
|
|
||||||
r = [[-1, -1], [0, 2], [1, -1]]
|
|
||||||
|
|
||||||
this will return [0.333, 0.333, 0.333]
|
|
||||||
"""
|
|
||||||
|
|
||||||
# baker: eq 7
|
|
||||||
A = np.array([
|
|
||||||
[ 1, 1, 1, 1 ],
|
|
||||||
[r[0][0], r[1][0], r[2][0], r[3][0]],
|
|
||||||
[r[0][1], r[1][1], r[2][1], r[3][1]],
|
|
||||||
[r[0][2], r[1][2], r[2][2], r[3][2]],
|
|
||||||
])
|
|
||||||
b = np.array([ 1,
|
|
||||||
X[0],
|
|
||||||
X[1],
|
|
||||||
X[2]
|
|
||||||
])
|
|
||||||
try:
|
|
||||||
phi = np.linalg.solve(A,b)
|
|
||||||
except:
|
|
||||||
print >> sys.stderr, "warning: get_phis_3D: calculation of phis yielded a linearly dependant system"
|
|
||||||
phi = np.dot(np.linalg.pinv(A), b)
|
|
||||||
|
|
||||||
return phi
|
|
||||||
|
|
||||||
|
|
||||||
def qlinear(X, R):
|
|
||||||
"""
|
|
||||||
this calculates the linear portion of q from X to r
|
|
||||||
|
|
||||||
also, this is baker eq 3
|
|
||||||
|
|
||||||
X = destination point
|
|
||||||
R = simplex points
|
|
||||||
q = CFD quantities of interest at the simplex points
|
|
||||||
"""
|
|
||||||
|
|
||||||
phis = get_phis(X, R.points)
|
|
||||||
qlin = sum([q_i * phi_i for q_i, phi_i in zip(R.q, phis)])
|
|
||||||
return phis, qlin
|
|
||||||
|
|
||||||
def qlinear_3D(X, R, q):
|
|
||||||
"""
|
|
||||||
this calculates the linear portion of q from X to r
|
|
||||||
|
|
||||||
X = destination point
|
|
||||||
R = simplex points
|
|
||||||
q = CFD quantities of interest at the simplex points(R)
|
|
||||||
"""
|
|
||||||
|
|
||||||
phis = get_phis_3D(X, R)
|
|
||||||
qlin = sum([q_i * phi_i for q_i, phi_i in zip(q, phis)])
|
|
||||||
return phis, qlin
|
|
||||||
|
|
||||||
def run_baker(X, R, S):
|
|
||||||
"""
|
|
||||||
This is the main function to call to get an interpolation to X from the input meshes
|
|
||||||
|
|
||||||
X -- the destination point (2D)
|
|
||||||
X = [0,0]
|
|
||||||
|
|
||||||
R = Simplex
|
|
||||||
|
|
||||||
S = extra points
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
# calculate values only for the triangle
|
|
||||||
phi, qlin = qlinear (X, R)
|
|
||||||
|
|
||||||
if len(S.points) == 0:
|
|
||||||
answer = {
|
|
||||||
'a': None,
|
|
||||||
'b': None,
|
|
||||||
'c': None,
|
|
||||||
'qlin': qlin,
|
|
||||||
'error': None,
|
|
||||||
'final': None,
|
|
||||||
}
|
|
||||||
return answer
|
|
||||||
|
|
||||||
B = [] # baker eq 9
|
|
||||||
w = [] # baker eq 11
|
|
||||||
|
|
||||||
for (s, q) in zip(S.points, S.q):
|
|
||||||
cur_phi, cur_qlin = qlinear(s, R)
|
|
||||||
(phi1, phi2, phi3) = cur_phi
|
|
||||||
|
|
||||||
B.append([phi1 * phi2, phi2 * phi3, phi3 * phi1])
|
|
||||||
w.append(q - cur_qlin)
|
|
||||||
|
|
||||||
B = np.array(B)
|
|
||||||
w = np.array(w)
|
|
||||||
|
|
||||||
A = np.dot(B.T, B)
|
|
||||||
b = np.dot(B.T, w)
|
|
||||||
|
|
||||||
# baker solve eq 10
|
|
||||||
try:
|
|
||||||
(a, b, c) = np.linalg.solve(A,b)
|
|
||||||
except:
|
|
||||||
print >> sys.stderr, "warning: run_baker: linear calculation went bad, resorting to np.linalg.pinv"
|
|
||||||
(a, b, c) = np.dot(np.linalg.pinv(A), b)
|
|
||||||
|
|
||||||
error_term = a * phi[0] * phi[1]\
|
|
||||||
+ b * phi[1] * phi[2]\
|
|
||||||
+ c * phi[2] * phi[0]
|
|
||||||
|
|
||||||
q_final = qlin + error_term
|
|
||||||
|
|
||||||
answer = {
|
|
||||||
'a': a,
|
|
||||||
'b': b,
|
|
||||||
'c': c,
|
|
||||||
'qlin': qlin,
|
|
||||||
'error': error_term,
|
|
||||||
'final': q_final,
|
|
||||||
}
|
|
||||||
|
|
||||||
return answer
|
|
||||||
|
163
lib/baker/baker.py
Normal file
163
lib/baker/baker.py
Normal file
@ -0,0 +1,163 @@
|
|||||||
|
import numpy as np
|
||||||
|
import sys
|
||||||
|
|
||||||
|
from tools import smberror
|
||||||
|
|
||||||
|
def get_phis(X, R):
|
||||||
|
"""
|
||||||
|
The get_phis function is used to get barycentric coordonites for a point on a triangle.
|
||||||
|
|
||||||
|
X -- the destination point (2D)
|
||||||
|
X = [0,0]
|
||||||
|
r -- the three points that make up the triangular simplex (2D)
|
||||||
|
r = [[-1, -1], [0, 2], [1, -1]]
|
||||||
|
|
||||||
|
this will return [0.333, 0.333, 0.333]
|
||||||
|
"""
|
||||||
|
|
||||||
|
# baker: eq 7
|
||||||
|
A = np.array([
|
||||||
|
[ 1, 1, 1],
|
||||||
|
[R[0][0], R[1][0], R[2][0]],
|
||||||
|
[R[0][1], R[1][1], R[2][1]],
|
||||||
|
])
|
||||||
|
b = np.array([ 1,
|
||||||
|
X[0],
|
||||||
|
X[1]
|
||||||
|
])
|
||||||
|
try:
|
||||||
|
phi = np.linalg.solve(A,b)
|
||||||
|
except:
|
||||||
|
print >> sys.stderr, "warning: get_phis: calculation of phis yielded a linearly dependant system"
|
||||||
|
raise smberror('get_phis')
|
||||||
|
phi = np.dot(np.linalg.pinv(A), b)
|
||||||
|
|
||||||
|
return phi
|
||||||
|
|
||||||
|
def get_phis_3D(X, r):
|
||||||
|
"""
|
||||||
|
The get_phis function is used to get barycentric coordonites for a point on a triangle.
|
||||||
|
|
||||||
|
X -- the destination point (3D)
|
||||||
|
X = [0,0,0]
|
||||||
|
r -- the four points that make up the tetrahedron (3D)
|
||||||
|
r = [[-1, -1], [0, 2], [1, -1]]
|
||||||
|
|
||||||
|
this will return [0.333, 0.333, 0.333]
|
||||||
|
"""
|
||||||
|
|
||||||
|
# baker: eq 7
|
||||||
|
A = np.array([
|
||||||
|
[ 1, 1, 1, 1 ],
|
||||||
|
[r[0][0], r[1][0], r[2][0], r[3][0]],
|
||||||
|
[r[0][1], r[1][1], r[2][1], r[3][1]],
|
||||||
|
[r[0][2], r[1][2], r[2][2], r[3][2]],
|
||||||
|
])
|
||||||
|
b = np.array([ 1,
|
||||||
|
X[0],
|
||||||
|
X[1],
|
||||||
|
X[2]
|
||||||
|
])
|
||||||
|
try:
|
||||||
|
phi = np.linalg.solve(A,b)
|
||||||
|
except:
|
||||||
|
print >> sys.stderr, "warning: get_phis_3D: calculation of phis yielded a linearly dependant system"
|
||||||
|
phi = np.dot(np.linalg.pinv(A), b)
|
||||||
|
|
||||||
|
return phi
|
||||||
|
|
||||||
|
|
||||||
|
def qlinear(X, R):
|
||||||
|
"""
|
||||||
|
this calculates the linear portion of q from X to r
|
||||||
|
|
||||||
|
also, this is baker eq 3
|
||||||
|
|
||||||
|
X = destination point
|
||||||
|
R = simplex points
|
||||||
|
q = CFD quantities of interest at the simplex points
|
||||||
|
"""
|
||||||
|
|
||||||
|
phis = get_phis(X, R.points)
|
||||||
|
qlin = sum([q_i * phi_i for q_i, phi_i in zip(R.q, phis)])
|
||||||
|
return phis, qlin
|
||||||
|
|
||||||
|
def qlinear_3D(X, R, q):
|
||||||
|
"""
|
||||||
|
this calculates the linear portion of q from X to r
|
||||||
|
|
||||||
|
X = destination point
|
||||||
|
R = simplex points
|
||||||
|
q = CFD quantities of interest at the simplex points(R)
|
||||||
|
"""
|
||||||
|
|
||||||
|
phis = get_phis_3D(X, R)
|
||||||
|
qlin = sum([q_i * phi_i for q_i, phi_i in zip(q, phis)])
|
||||||
|
return phis, qlin
|
||||||
|
|
||||||
|
def run_baker(X, R, S):
|
||||||
|
"""
|
||||||
|
This is the main function to call to get an interpolation to X from the input meshes
|
||||||
|
|
||||||
|
X -- the destination point (2D)
|
||||||
|
X = [0,0]
|
||||||
|
|
||||||
|
R = Simplex
|
||||||
|
|
||||||
|
S = extra points
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
# calculate values only for the triangle
|
||||||
|
phi, qlin = qlinear (X, R)
|
||||||
|
|
||||||
|
if len(S.points) == 0:
|
||||||
|
answer = {
|
||||||
|
'a': None,
|
||||||
|
'b': None,
|
||||||
|
'c': None,
|
||||||
|
'qlin': qlin,
|
||||||
|
'error': None,
|
||||||
|
'final': None,
|
||||||
|
}
|
||||||
|
return answer
|
||||||
|
|
||||||
|
B = [] # baker eq 9
|
||||||
|
w = [] # baker eq 11
|
||||||
|
|
||||||
|
for (s, q) in zip(S.points, S.q):
|
||||||
|
cur_phi, cur_qlin = qlinear(s, R)
|
||||||
|
(phi1, phi2, phi3) = cur_phi
|
||||||
|
|
||||||
|
B.append([phi1 * phi2, phi2 * phi3, phi3 * phi1])
|
||||||
|
w.append(q - cur_qlin)
|
||||||
|
|
||||||
|
B = np.array(B)
|
||||||
|
w = np.array(w)
|
||||||
|
|
||||||
|
A = np.dot(B.T, B)
|
||||||
|
b = np.dot(B.T, w)
|
||||||
|
|
||||||
|
# baker solve eq 10
|
||||||
|
try:
|
||||||
|
(a, b, c) = np.linalg.solve(A,b)
|
||||||
|
except:
|
||||||
|
print >> sys.stderr, "warning: run_baker: linear calculation went bad, resorting to np.linalg.pinv"
|
||||||
|
(a, b, c) = np.dot(np.linalg.pinv(A), b)
|
||||||
|
|
||||||
|
error_term = a * phi[0] * phi[1]\
|
||||||
|
+ b * phi[1] * phi[2]\
|
||||||
|
+ c * phi[2] * phi[0]
|
||||||
|
|
||||||
|
q_final = qlin + error_term
|
||||||
|
|
||||||
|
answer = {
|
||||||
|
'a': a,
|
||||||
|
'b': b,
|
||||||
|
'c': c,
|
||||||
|
'qlin': qlin,
|
||||||
|
'error': error_term,
|
||||||
|
'final': q_final,
|
||||||
|
}
|
||||||
|
|
||||||
|
return answer
|
@ -1,287 +1 @@
|
|||||||
#!/usr/bin/python
|
from grid import *
|
||||||
|
|
||||||
import sys
|
|
||||||
import re
|
|
||||||
from collections import defaultdict
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import scipy.spatial
|
|
||||||
|
|
||||||
from baker import run_baker, get_phis
|
|
||||||
from baker.tools import exact_func, smberror
|
|
||||||
from grid.smcqdelaunay import *
|
|
||||||
|
|
||||||
class face(object):
|
|
||||||
def __init__(self, name):
|
|
||||||
self.name = name
|
|
||||||
self.verts = []
|
|
||||||
self.neighbors = []
|
|
||||||
|
|
||||||
def add_vert(self, v):
|
|
||||||
"""
|
|
||||||
v should be an index into grid.points
|
|
||||||
"""
|
|
||||||
self.verts.append(v)
|
|
||||||
|
|
||||||
def add_neighbor(self, n):
|
|
||||||
"""
|
|
||||||
reference to another face object
|
|
||||||
"""
|
|
||||||
self.neighbors.append(n)
|
|
||||||
|
|
||||||
def contains(self, X, grid):
|
|
||||||
R = [grid.points[i] for i in self.verts]
|
|
||||||
|
|
||||||
phis = get_phis(X, R)
|
|
||||||
|
|
||||||
r = True
|
|
||||||
if [i for i in phis if i < 0.0]:
|
|
||||||
r = False
|
|
||||||
return r
|
|
||||||
|
|
||||||
def __str__(self):
|
|
||||||
neighbors = [i.name for i in self.neighbors]
|
|
||||||
return '%s: verts: %s neighbors: [%s]' %\
|
|
||||||
(
|
|
||||||
self.name,
|
|
||||||
self.verts,
|
|
||||||
", ".join(neighbors)
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class grid(object):
|
|
||||||
facet_re = re.compile(r'''
|
|
||||||
-\s+(?P<facet>f\d+).*?
|
|
||||||
vertices:\s(?P<verts>.*?)\n.*?
|
|
||||||
neighboring\s facets:\s+(?P<neigh>[\sf\d]*)
|
|
||||||
''', re.S|re.X)
|
|
||||||
|
|
||||||
point_re = re.compile(r'''
|
|
||||||
-\s+(?P<point>p\d+).*?
|
|
||||||
neighbors:\s+(?P<neigh>[\sf\d]*)
|
|
||||||
''', re.S|re.X)
|
|
||||||
|
|
||||||
vert_re = re.compile(r'''
|
|
||||||
(p\d+)
|
|
||||||
''', re.S|re.X)
|
|
||||||
|
|
||||||
|
|
||||||
def __init__(self, points, q):
|
|
||||||
"""
|
|
||||||
this thing eats two pre-constructed arrays of stuff:
|
|
||||||
points = array of arrays (i will convert to numpy.array)
|
|
||||||
[[x0,y0], [x1,y1], ...]
|
|
||||||
q = array (1D) of important values
|
|
||||||
"""
|
|
||||||
|
|
||||||
self.points = np.array(points)
|
|
||||||
self.q = np.array(q)
|
|
||||||
self.tree = scipy.spatial.KDTree(self.points)
|
|
||||||
self.faces = {}
|
|
||||||
self.facets_for_point = defaultdict(list)
|
|
||||||
|
|
||||||
|
|
||||||
def create_mesh(self, indicies):
|
|
||||||
p = [self.points[i] for i in indicies]
|
|
||||||
q = [self.q[i] for i in indicies]
|
|
||||||
return grid(p, q)
|
|
||||||
|
|
||||||
|
|
||||||
def get_simplex_and_nearest_points(self, X, extra_points = 3, simplex_size = 3):
|
|
||||||
"""
|
|
||||||
this returns two grid objects: R and S.
|
|
||||||
|
|
||||||
R is a grid object that is the (a) containing simplex around point X
|
|
||||||
S is S_j from baker's paper : some points from all point that are not the simplex
|
|
||||||
"""
|
|
||||||
(dist, indicies) = self.tree.query(X, 3 + extra_points)
|
|
||||||
|
|
||||||
|
|
||||||
# get the containing simplex
|
|
||||||
r_mesh = self.create_mesh(indicies[:simplex_size])
|
|
||||||
# and some extra points
|
|
||||||
s_mesh = self.create_mesh(indicies[simplex_size:])
|
|
||||||
|
|
||||||
return (r_mesh, s_mesh)
|
|
||||||
|
|
||||||
def get_points_conn(self, X):
|
|
||||||
"""
|
|
||||||
this returns two grid objects: R and S.
|
|
||||||
|
|
||||||
this function differes from the get_simplex_and_nearest_points
|
|
||||||
function in that it builds up the extra points based on
|
|
||||||
connectivity information, not just nearest-neighbor.
|
|
||||||
in theory, this will work much better for situations like
|
|
||||||
points near a short edge in a boundary layer cell where the
|
|
||||||
nearest points would all be colinear
|
|
||||||
|
|
||||||
R is a grid object that is the (a) containing simplex around point X
|
|
||||||
S is a connectivity-based nearest-neighbor lookup, limited to 3 extra points
|
|
||||||
"""
|
|
||||||
if not self.faces:
|
|
||||||
self.construct_connectivity()
|
|
||||||
|
|
||||||
# get closest point
|
|
||||||
(dist, indicies) = self.tree.query(X, 2)
|
|
||||||
|
|
||||||
simplex = None
|
|
||||||
for i in self.facets_for_point[indicies[0]]:
|
|
||||||
if i.contains(X, self):
|
|
||||||
simplex = i
|
|
||||||
break
|
|
||||||
|
|
||||||
if not simplex:
|
|
||||||
raise AssertionError('no containing simplex found')
|
|
||||||
|
|
||||||
R = self.create_mesh(simplex.verts)
|
|
||||||
|
|
||||||
|
|
||||||
s = []
|
|
||||||
for c,i in enumerate(simplex.neighbors):
|
|
||||||
s.extend([guy for guy in i.verts if not guy in simplex.verts])
|
|
||||||
S = self.create_mesh(s)
|
|
||||||
|
|
||||||
return R, S
|
|
||||||
|
|
||||||
def run_baker(self, X):
|
|
||||||
answer = None
|
|
||||||
|
|
||||||
try:
|
|
||||||
(R, S) = self.get_simplex_and_nearest_points(X)
|
|
||||||
answer = run_baker(X, R, S)
|
|
||||||
except smberror as e:
|
|
||||||
print "caught error: %s, trying with connectivity-based mesh" % e
|
|
||||||
(R, S) = self.get_points_conn(X)
|
|
||||||
answer = run_baker(X, R, S)
|
|
||||||
|
|
||||||
return answer
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def construct_connectivity(self):
|
|
||||||
"""
|
|
||||||
a call to this method prepares the internal connectivity structure.
|
|
||||||
|
|
||||||
this is part of the __init__ for a simple_rect_grid, but can be called from any grid object
|
|
||||||
"""
|
|
||||||
qdelaunay_string = get_qdelaunay_dump_str(self)
|
|
||||||
facet_to_facets = []
|
|
||||||
for matcher in grid.facet_re.finditer(qdelaunay_string):
|
|
||||||
d = matcher.groupdict()
|
|
||||||
|
|
||||||
facet_name = d['facet']
|
|
||||||
verticies = d['verts']
|
|
||||||
neighboring_facets = d['neigh']
|
|
||||||
|
|
||||||
cur_face = face(facet_name)
|
|
||||||
self.faces[facet_name] = cur_face
|
|
||||||
|
|
||||||
for v in grid.vert_re.findall(verticies):
|
|
||||||
vertex_index = int(v[1:])
|
|
||||||
cur_face.add_vert(vertex_index)
|
|
||||||
self.facets_for_point[vertex_index].append(cur_face)
|
|
||||||
|
|
||||||
nghbrs = [(facet_name, i) for i in neighboring_facets.split()]
|
|
||||||
facet_to_facets.extend(nghbrs)
|
|
||||||
|
|
||||||
for rel in facet_to_facets:
|
|
||||||
if rel[1] in self.faces:
|
|
||||||
self.faces[rel[0]].add_neighbor(self.faces[rel[1]])
|
|
||||||
|
|
||||||
# for matcher in grid.point_re.finditer(qdelaunay_string):
|
|
||||||
# d = matcher.groupdict()
|
|
||||||
|
|
||||||
# point = d['point']
|
|
||||||
# neighboring_facets = d['neigh']
|
|
||||||
|
|
||||||
# self.facets_for_point[int(point[1:])] = [i for i in neighboring_facets.split() if i in self.faces]
|
|
||||||
|
|
||||||
def for_qhull_generator(self):
|
|
||||||
"""
|
|
||||||
this returns a generator that should be fed into qdelaunay
|
|
||||||
"""
|
|
||||||
|
|
||||||
yield '2';
|
|
||||||
yield '%d' % len(self.points)
|
|
||||||
|
|
||||||
for p in self.points:
|
|
||||||
yield "%f %f" % (p[0], p[1])
|
|
||||||
|
|
||||||
def for_qhull(self):
|
|
||||||
"""
|
|
||||||
this returns a single string that should be fed into qdelaunay
|
|
||||||
"""
|
|
||||||
r = '2\n'
|
|
||||||
r += '%d\n' % len(self.points)
|
|
||||||
for p in self.points:
|
|
||||||
r += "%f %f\n" % (p[0], p[1])
|
|
||||||
return r
|
|
||||||
|
|
||||||
def __str__(self):
|
|
||||||
r = ''
|
|
||||||
assert( len(self.points) == len(self.q) )
|
|
||||||
for c, i in enumerate(zip(self.points, self.q)):
|
|
||||||
r += "%d %r: %0.4f" % (c,i[0], i[1])
|
|
||||||
facet_str = ", ".join([f.name for f in self.facets_for_point[c]])
|
|
||||||
r += " faces: [%s]" % facet_str
|
|
||||||
r += "\n"
|
|
||||||
if self.faces:
|
|
||||||
for v in self.faces.itervalues():
|
|
||||||
r += "%s\n" % v
|
|
||||||
return r
|
|
||||||
|
|
||||||
class simple_rect_grid(grid):
|
|
||||||
def __init__(self, xres = 5, yres = 5):
|
|
||||||
xmin = -1.0
|
|
||||||
xmax = 1.0
|
|
||||||
xspan = xmax - xmin
|
|
||||||
xdel = xspan / float(xres - 1)
|
|
||||||
|
|
||||||
ymin = -1.0
|
|
||||||
ymay = 1.0
|
|
||||||
yspan = ymay - ymin
|
|
||||||
ydel = yspan / float(yres - 1)
|
|
||||||
|
|
||||||
|
|
||||||
points = []
|
|
||||||
q = []
|
|
||||||
for x in xrange(xres):
|
|
||||||
cur_x = xmin + (x * xdel)
|
|
||||||
for y in xrange(yres):
|
|
||||||
cur_y = ymin + (y * ydel)
|
|
||||||
points.append([cur_x, cur_y])
|
|
||||||
q.append(exact_func(cur_x, cur_y))
|
|
||||||
grid.__init__(self, points, q)
|
|
||||||
self.construct_connectivity()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class simple_random_grid(simple_rect_grid):
|
|
||||||
def __init__(self, num_points = 10):
|
|
||||||
points = []
|
|
||||||
q = []
|
|
||||||
|
|
||||||
r = np.random
|
|
||||||
|
|
||||||
for i in xrange(num_points):
|
|
||||||
cur_x = r.rand()
|
|
||||||
cur_y = r.rand()
|
|
||||||
|
|
||||||
points.append([cur_x, cur_y])
|
|
||||||
q.append(exact_func(cur_x, cur_y))
|
|
||||||
grid.__init__(self, points, q)
|
|
||||||
|
|
||||||
self.points = np.array(self.points)
|
|
||||||
self.q = np.array(self.q)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
try:
|
|
||||||
resolution = int(sys.argv[1])
|
|
||||||
except:
|
|
||||||
resolution = 10
|
|
||||||
g = simple_rect_grid(resolution, resolution)
|
|
||||||
print g.for_qhull()
|
|
||||||
|
287
lib/grid/grid.py
Executable file
287
lib/grid/grid.py
Executable file
@ -0,0 +1,287 @@
|
|||||||
|
#!/usr/bin/python
|
||||||
|
|
||||||
|
import sys
|
||||||
|
import re
|
||||||
|
from collections import defaultdict
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import scipy.spatial
|
||||||
|
|
||||||
|
from baker import run_baker, get_phis
|
||||||
|
from baker.tools import exact_func, smberror
|
||||||
|
from smcqdelaunay import *
|
||||||
|
|
||||||
|
class face(object):
|
||||||
|
def __init__(self, name):
|
||||||
|
self.name = name
|
||||||
|
self.verts = []
|
||||||
|
self.neighbors = []
|
||||||
|
|
||||||
|
def add_vert(self, v):
|
||||||
|
"""
|
||||||
|
v should be an index into grid.points
|
||||||
|
"""
|
||||||
|
self.verts.append(v)
|
||||||
|
|
||||||
|
def add_neighbor(self, n):
|
||||||
|
"""
|
||||||
|
reference to another face object
|
||||||
|
"""
|
||||||
|
self.neighbors.append(n)
|
||||||
|
|
||||||
|
def contains(self, X, grid):
|
||||||
|
R = [grid.points[i] for i in self.verts]
|
||||||
|
|
||||||
|
phis = get_phis(X, R)
|
||||||
|
|
||||||
|
r = True
|
||||||
|
if [i for i in phis if i < 0.0]:
|
||||||
|
r = False
|
||||||
|
return r
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
neighbors = [i.name for i in self.neighbors]
|
||||||
|
return '%s: verts: %s neighbors: [%s]' %\
|
||||||
|
(
|
||||||
|
self.name,
|
||||||
|
self.verts,
|
||||||
|
", ".join(neighbors)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class grid(object):
|
||||||
|
facet_re = re.compile(r'''
|
||||||
|
-\s+(?P<facet>f\d+).*?
|
||||||
|
vertices:\s(?P<verts>.*?)\n.*?
|
||||||
|
neighboring\s facets:\s+(?P<neigh>[\sf\d]*)
|
||||||
|
''', re.S|re.X)
|
||||||
|
|
||||||
|
point_re = re.compile(r'''
|
||||||
|
-\s+(?P<point>p\d+).*?
|
||||||
|
neighbors:\s+(?P<neigh>[\sf\d]*)
|
||||||
|
''', re.S|re.X)
|
||||||
|
|
||||||
|
vert_re = re.compile(r'''
|
||||||
|
(p\d+)
|
||||||
|
''', re.S|re.X)
|
||||||
|
|
||||||
|
|
||||||
|
def __init__(self, points, q):
|
||||||
|
"""
|
||||||
|
this thing eats two pre-constructed arrays of stuff:
|
||||||
|
points = array of arrays (i will convert to numpy.array)
|
||||||
|
[[x0,y0], [x1,y1], ...]
|
||||||
|
q = array (1D) of important values
|
||||||
|
"""
|
||||||
|
|
||||||
|
self.points = np.array(points)
|
||||||
|
self.q = np.array(q)
|
||||||
|
self.tree = scipy.spatial.KDTree(self.points)
|
||||||
|
self.faces = {}
|
||||||
|
self.facets_for_point = defaultdict(list)
|
||||||
|
|
||||||
|
|
||||||
|
def create_mesh(self, indicies):
|
||||||
|
p = [self.points[i] for i in indicies]
|
||||||
|
q = [self.q[i] for i in indicies]
|
||||||
|
return grid(p, q)
|
||||||
|
|
||||||
|
|
||||||
|
def get_simplex_and_nearest_points(self, X, extra_points = 3, simplex_size = 3):
|
||||||
|
"""
|
||||||
|
this returns two grid objects: R and S.
|
||||||
|
|
||||||
|
R is a grid object that is the (a) containing simplex around point X
|
||||||
|
S is S_j from baker's paper : some points from all point that are not the simplex
|
||||||
|
"""
|
||||||
|
(dist, indicies) = self.tree.query(X, 3 + extra_points)
|
||||||
|
|
||||||
|
|
||||||
|
# get the containing simplex
|
||||||
|
r_mesh = self.create_mesh(indicies[:simplex_size])
|
||||||
|
# and some extra points
|
||||||
|
s_mesh = self.create_mesh(indicies[simplex_size:])
|
||||||
|
|
||||||
|
return (r_mesh, s_mesh)
|
||||||
|
|
||||||
|
def get_points_conn(self, X):
|
||||||
|
"""
|
||||||
|
this returns two grid objects: R and S.
|
||||||
|
|
||||||
|
this function differes from the get_simplex_and_nearest_points
|
||||||
|
function in that it builds up the extra points based on
|
||||||
|
connectivity information, not just nearest-neighbor.
|
||||||
|
in theory, this will work much better for situations like
|
||||||
|
points near a short edge in a boundary layer cell where the
|
||||||
|
nearest points would all be colinear
|
||||||
|
|
||||||
|
R is a grid object that is the (a) containing simplex around point X
|
||||||
|
S is a connectivity-based nearest-neighbor lookup, limited to 3 extra points
|
||||||
|
"""
|
||||||
|
if not self.faces:
|
||||||
|
self.construct_connectivity()
|
||||||
|
|
||||||
|
# get closest point
|
||||||
|
(dist, indicies) = self.tree.query(X, 2)
|
||||||
|
|
||||||
|
simplex = None
|
||||||
|
for i in self.facets_for_point[indicies[0]]:
|
||||||
|
if i.contains(X, self):
|
||||||
|
simplex = i
|
||||||
|
break
|
||||||
|
|
||||||
|
if not simplex:
|
||||||
|
raise AssertionError('no containing simplex found')
|
||||||
|
|
||||||
|
R = self.create_mesh(simplex.verts)
|
||||||
|
|
||||||
|
|
||||||
|
s = []
|
||||||
|
for c,i in enumerate(simplex.neighbors):
|
||||||
|
s.extend([guy for guy in i.verts if not guy in simplex.verts])
|
||||||
|
S = self.create_mesh(s)
|
||||||
|
|
||||||
|
return R, S
|
||||||
|
|
||||||
|
def run_baker(self, X):
|
||||||
|
answer = None
|
||||||
|
|
||||||
|
try:
|
||||||
|
(R, S) = self.get_simplex_and_nearest_points(X)
|
||||||
|
answer = run_baker(X, R, S)
|
||||||
|
except smberror as e:
|
||||||
|
print "caught error: %s, trying with connectivity-based mesh" % e
|
||||||
|
(R, S) = self.get_points_conn(X)
|
||||||
|
answer = run_baker(X, R, S)
|
||||||
|
|
||||||
|
return answer
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def construct_connectivity(self):
|
||||||
|
"""
|
||||||
|
a call to this method prepares the internal connectivity structure.
|
||||||
|
|
||||||
|
this is part of the __init__ for a simple_rect_grid, but can be called from any grid object
|
||||||
|
"""
|
||||||
|
qdelaunay_string = get_qdelaunay_dump_str(self)
|
||||||
|
facet_to_facets = []
|
||||||
|
for matcher in grid.facet_re.finditer(qdelaunay_string):
|
||||||
|
d = matcher.groupdict()
|
||||||
|
|
||||||
|
facet_name = d['facet']
|
||||||
|
verticies = d['verts']
|
||||||
|
neighboring_facets = d['neigh']
|
||||||
|
|
||||||
|
cur_face = face(facet_name)
|
||||||
|
self.faces[facet_name] = cur_face
|
||||||
|
|
||||||
|
for v in grid.vert_re.findall(verticies):
|
||||||
|
vertex_index = int(v[1:])
|
||||||
|
cur_face.add_vert(vertex_index)
|
||||||
|
self.facets_for_point[vertex_index].append(cur_face)
|
||||||
|
|
||||||
|
nghbrs = [(facet_name, i) for i in neighboring_facets.split()]
|
||||||
|
facet_to_facets.extend(nghbrs)
|
||||||
|
|
||||||
|
for rel in facet_to_facets:
|
||||||
|
if rel[1] in self.faces:
|
||||||
|
self.faces[rel[0]].add_neighbor(self.faces[rel[1]])
|
||||||
|
|
||||||
|
# for matcher in grid.point_re.finditer(qdelaunay_string):
|
||||||
|
# d = matcher.groupdict()
|
||||||
|
|
||||||
|
# point = d['point']
|
||||||
|
# neighboring_facets = d['neigh']
|
||||||
|
|
||||||
|
# self.facets_for_point[int(point[1:])] = [i for i in neighboring_facets.split() if i in self.faces]
|
||||||
|
|
||||||
|
def for_qhull_generator(self):
|
||||||
|
"""
|
||||||
|
this returns a generator that should be fed into qdelaunay
|
||||||
|
"""
|
||||||
|
|
||||||
|
yield '2';
|
||||||
|
yield '%d' % len(self.points)
|
||||||
|
|
||||||
|
for p in self.points:
|
||||||
|
yield "%f %f" % (p[0], p[1])
|
||||||
|
|
||||||
|
def for_qhull(self):
|
||||||
|
"""
|
||||||
|
this returns a single string that should be fed into qdelaunay
|
||||||
|
"""
|
||||||
|
r = '2\n'
|
||||||
|
r += '%d\n' % len(self.points)
|
||||||
|
for p in self.points:
|
||||||
|
r += "%f %f\n" % (p[0], p[1])
|
||||||
|
return r
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
r = ''
|
||||||
|
assert( len(self.points) == len(self.q) )
|
||||||
|
for c, i in enumerate(zip(self.points, self.q)):
|
||||||
|
r += "%d %r: %0.4f" % (c,i[0], i[1])
|
||||||
|
facet_str = ", ".join([f.name for f in self.facets_for_point[c]])
|
||||||
|
r += " faces: [%s]" % facet_str
|
||||||
|
r += "\n"
|
||||||
|
if self.faces:
|
||||||
|
for v in self.faces.itervalues():
|
||||||
|
r += "%s\n" % v
|
||||||
|
return r
|
||||||
|
|
||||||
|
class simple_rect_grid(grid):
|
||||||
|
def __init__(self, xres = 5, yres = 5):
|
||||||
|
xmin = -1.0
|
||||||
|
xmax = 1.0
|
||||||
|
xspan = xmax - xmin
|
||||||
|
xdel = xspan / float(xres - 1)
|
||||||
|
|
||||||
|
ymin = -1.0
|
||||||
|
ymay = 1.0
|
||||||
|
yspan = ymay - ymin
|
||||||
|
ydel = yspan / float(yres - 1)
|
||||||
|
|
||||||
|
|
||||||
|
points = []
|
||||||
|
q = []
|
||||||
|
for x in xrange(xres):
|
||||||
|
cur_x = xmin + (x * xdel)
|
||||||
|
for y in xrange(yres):
|
||||||
|
cur_y = ymin + (y * ydel)
|
||||||
|
points.append([cur_x, cur_y])
|
||||||
|
q.append(exact_func(cur_x, cur_y))
|
||||||
|
grid.__init__(self, points, q)
|
||||||
|
self.construct_connectivity()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class simple_random_grid(simple_rect_grid):
|
||||||
|
def __init__(self, num_points = 10):
|
||||||
|
points = []
|
||||||
|
q = []
|
||||||
|
|
||||||
|
r = np.random
|
||||||
|
|
||||||
|
for i in xrange(num_points):
|
||||||
|
cur_x = r.rand()
|
||||||
|
cur_y = r.rand()
|
||||||
|
|
||||||
|
points.append([cur_x, cur_y])
|
||||||
|
q.append(exact_func(cur_x, cur_y))
|
||||||
|
grid.__init__(self, points, q)
|
||||||
|
|
||||||
|
self.points = np.array(self.points)
|
||||||
|
self.q = np.array(self.q)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
try:
|
||||||
|
resolution = int(sys.argv[1])
|
||||||
|
except:
|
||||||
|
resolution = 10
|
||||||
|
g = simple_rect_grid(resolution, resolution)
|
||||||
|
print g.for_qhull()
|
Loading…
Reference in New Issue
Block a user