Major: made scripts pass pep8 and pyflakes
This commit is contained in:
parent
1bc797a14d
commit
837a72b246
@ -1,40 +1 @@
|
||||
import os
|
||||
|
||||
import logging
|
||||
import logging.handlers
|
||||
|
||||
import json
|
||||
|
||||
|
||||
LEVELS = {'debug': logging.DEBUG,
|
||||
'info': logging.INFO,
|
||||
'warning': logging.WARNING,
|
||||
'error': logging.ERROR,
|
||||
'critical': logging.CRITICAL}
|
||||
|
||||
default_config = {
|
||||
'filename': '/tmp/interp.log',
|
||||
'level': 'debug',
|
||||
'size' : 102400,
|
||||
'logbackup': 10,
|
||||
'pypath': None,
|
||||
}
|
||||
|
||||
try:
|
||||
with open(os.path.expanduser('~/.config/interp.json')) as config_file:
|
||||
d = json.load(config_file)
|
||||
except IOError as e:
|
||||
d = {}
|
||||
|
||||
config = dict(default_config.items() + d.items())
|
||||
|
||||
logger = logging.getLogger('interp')
|
||||
logger.setLevel(LEVELS[config['level']])
|
||||
my_format = logging.Formatter('%(asctime)s %(levelname)s (%(process)d) %(filename)s %(funcName)s:%(lineno)d %(message)s')
|
||||
handler = logging.handlers.RotatingFileHandler(
|
||||
config['filename'], maxBytes = config['size'] * 1024, backupCount = config['logbackup'])
|
||||
handler.setFormatter(my_format)
|
||||
logger.addHandler(handler)
|
||||
|
||||
|
||||
__version__ = '0.2'
|
||||
|
@ -1,18 +1,20 @@
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
|
||||
from functools import wraps
|
||||
import itertools
|
||||
|
||||
import interp
|
||||
import logging
|
||||
log = logging.getLogger('interp')
|
||||
|
||||
AGGRESSIVE_ERROR_SOLVE = True
|
||||
RAISE_PATHOLOGICAL_EXCEPTION = False
|
||||
|
||||
__version__ = interp.__version__
|
||||
|
||||
|
||||
def get_phis(X, R):
|
||||
"""
|
||||
The get_phis function is used to get barycentric coordonites for a
|
||||
point on a triangle or tetrahedron. This is equation (*\ref{eq:qlinarea}*)
|
||||
point on a triangle or tetrahedron (Equation (*\ref{eq:qlinarea}*))
|
||||
|
||||
in 2D:
|
||||
|
||||
@ -41,45 +43,27 @@ def get_phis(X, R):
|
||||
|
||||
# equations (*\ref{eq:lin3d}*) and (*\ref{eq:lin2d}*)
|
||||
if len(X) == 2:
|
||||
log.debug("running 2D")
|
||||
A = np.array([
|
||||
[1, 1, 1],
|
||||
[R[0][0], R[1][0], R[2][0]],
|
||||
[R[0][1], R[1][1], R[2][1]],
|
||||
])
|
||||
b = np.array([ 1,
|
||||
X[0],
|
||||
X[1]
|
||||
])
|
||||
b = np.array([1, X[0], X[1]])
|
||||
elif len(X) == 3:
|
||||
log.debug("running 3D")
|
||||
A = np.array([
|
||||
[1, 1, 1, 1],
|
||||
[R[0][0], R[1][0], R[2][0], R[3][0]],
|
||||
[R[0][1], R[1][1], R[2][1], R[3][1]],
|
||||
[R[0][2], R[1][2], R[2][2], R[3][2]],
|
||||
])
|
||||
b = np.array([ 1,
|
||||
X[0],
|
||||
X[1],
|
||||
X[2]
|
||||
])
|
||||
b = np.array([1, X[0], X[1], X[2]])
|
||||
else:
|
||||
raise Exception("inapropriate demension on X")
|
||||
|
||||
try:
|
||||
phi = np.linalg.solve(A, b)
|
||||
except np.linalg.LinAlgError as e:
|
||||
msg = "calculation of phis yielded a linearly dependant system (%s)" % e
|
||||
log.error(msg)
|
||||
# raise Exception(msg)
|
||||
phi = np.dot(np.linalg.pinv(A), b)
|
||||
|
||||
log.debug("phi: %s", phi)
|
||||
|
||||
return phi
|
||||
|
||||
def qlinear(X, R):
|
||||
|
||||
def qlinear(X, R, q):
|
||||
"""
|
||||
this calculates the linear portion of q from R to X
|
||||
|
||||
@ -89,15 +73,13 @@ def qlinear(X, R):
|
||||
R = a inter.grid object; must have R.points and R.q
|
||||
"""
|
||||
|
||||
phis = get_phis(X, R.verts)
|
||||
qlin = np.sum([q_i * phi_i for q_i, phi_i in zip(R.q, phis)])
|
||||
|
||||
log.debug("phis: %s", phis)
|
||||
log.debug("qlin: %s", qlin)
|
||||
phis = get_phis(X, R)
|
||||
qlin = np.sum([q_i * phi_i for q_i, phi_i in zip(q, phis)])
|
||||
|
||||
return phis, qlin
|
||||
|
||||
def get_error(phi, R, S, order = 2):
|
||||
|
||||
def get_error(phi, R, R_q, S, S_q, order=2):
|
||||
"""
|
||||
Calculate the error approximation terms, returning the unknowns
|
||||
a,b, and c in equation (*\ref{eq:quadratic2d}*).
|
||||
@ -106,10 +88,9 @@ def get_error(phi, R, S, order = 2):
|
||||
w = [] # equation ((*\ref{eq:w}*)
|
||||
|
||||
cur_pattern = pattern(len(phi), order)
|
||||
log.info("pattern: %s" % cur_pattern)
|
||||
|
||||
for (s,q) in zip(S.verts, S.q):
|
||||
cur_phi, cur_qlin = qlinear(s, R)
|
||||
for (s, cur_q) in zip(S, S_q):
|
||||
cur_phi, cur_qlin = qlinear(s, R, R_q)
|
||||
l = []
|
||||
for i in cur_pattern:
|
||||
cur_sum = cur_phi[i[0]]
|
||||
@ -118,11 +99,7 @@ def get_error(phi, R, S, order = 2):
|
||||
l.append(cur_sum)
|
||||
|
||||
B.append(l)
|
||||
w.append(q - cur_qlin)
|
||||
|
||||
log.info("B: %s" % B)
|
||||
log.info("w: %s" % w)
|
||||
|
||||
w.append(cur_q - cur_qlin)
|
||||
|
||||
B = np.array(B)
|
||||
w = np.array(w)
|
||||
@ -132,8 +109,9 @@ def get_error(phi, R, S, order = 2):
|
||||
|
||||
try:
|
||||
abc = np.linalg.solve(A, b)
|
||||
except np.linalg.LinAlgError as e:
|
||||
log.error("linear calculation went bad, resorting to np.linalg.pinv: %s" % e)
|
||||
except np.linalg.LinAlgError:
|
||||
if not AGGRESSIVE_ERROR_SOLVE:
|
||||
return None, None
|
||||
abc = np.dot(np.linalg.pinv(A), b)
|
||||
|
||||
error_term = 0.0
|
||||
@ -143,10 +121,10 @@ def get_error(phi, R, S, order = 2):
|
||||
cur_sum *= phi[j]
|
||||
error_term += cur_sum
|
||||
|
||||
log.debug("error_term: %s" % error_term)
|
||||
return error_term, abc
|
||||
|
||||
def run_baker(X, R, S, order=2):
|
||||
|
||||
def run_baker(X, R, R_q, S, S_q, order=2):
|
||||
"""
|
||||
This is the main function to call to get an interpolation to X from the
|
||||
input meshes
|
||||
@ -156,23 +134,32 @@ def run_baker(X, R, S, order=2):
|
||||
R = Simplex
|
||||
S = extra points
|
||||
"""
|
||||
log.debug("order = %d" % order)
|
||||
log.debug("extra points = %d" % len(S.verts))
|
||||
|
||||
answer = {
|
||||
'qlin': None,
|
||||
'error': None,
|
||||
'final': None,
|
||||
}
|
||||
|
||||
# calculate values only for the simplex triangle
|
||||
phi, qlin = qlinear(X, R)
|
||||
phi, qlin = qlinear(X, R, R_q)
|
||||
|
||||
if order == 1:
|
||||
answer['qlin'] = qlin
|
||||
answer['final'] = qlin
|
||||
return answer
|
||||
elif order in xrange(2, 11):
|
||||
error_term, abc = get_error(phi, R, S, order)
|
||||
error_term, abc = get_error(phi, R, R_q, S, S_q, order)
|
||||
|
||||
# if a pathological vertex configuration was encountered and
|
||||
# AGGRESSIVE_ERROR_SOLVE is False, get_error will return (None, None)
|
||||
# indicating that only linear interpolation should be performed
|
||||
if (error_term is None) and (abc is None):
|
||||
if RAISE_PATHOLOGICAL_EXCEPTION:
|
||||
raise np.linalg.LinAlgError("Pathological Vertex Config")
|
||||
answer['qlin'] = qlin
|
||||
answer['final'] = qlin
|
||||
return answer
|
||||
else:
|
||||
raise Exception('unsupported order "%d" for baker method' % order)
|
||||
|
||||
@ -183,8 +170,6 @@ def run_baker(X, R, S, order=2):
|
||||
answer['final'] = q_final
|
||||
answer['abc'] = abc
|
||||
|
||||
log.debug(answer)
|
||||
|
||||
return answer
|
||||
|
||||
|
||||
@ -194,11 +179,11 @@ def memoize(f):
|
||||
http://en.wikipedia.org/wiki/Memoize
|
||||
"""
|
||||
cache = {}
|
||||
|
||||
@wraps(f)
|
||||
def memf(simplex_size, nu):
|
||||
x = (simplex_size, nu)
|
||||
if x not in cache:
|
||||
log.debug("adding to cache: %s", x)
|
||||
cache[x] = f(simplex_size, nu)
|
||||
return cache[x]
|
||||
return memf
|
||||
@ -210,7 +195,6 @@ def pattern(simplex_size, nu):
|
||||
This function returns the pattern requisite to compose the error
|
||||
approximation function, and the matrix B.
|
||||
"""
|
||||
log.debug("pattern: simplex: %d, order: %d" % (simplex_size, nu))
|
||||
|
||||
r = []
|
||||
for i in itertools.product(xrange(simplex_size), repeat=nu):
|
||||
|
@ -5,6 +5,7 @@ import rlcompleter
|
||||
|
||||
historyPath = os.path.expanduser("~/.pyhistory")
|
||||
|
||||
|
||||
def save_history(historyPath=historyPath):
|
||||
import readline
|
||||
readline.write_history_file(historyPath)
|
||||
|
@ -6,6 +6,7 @@ results_q = Queue.Queue()
|
||||
minions_q = Queue.Queue()
|
||||
master_q = Queue.Queue()
|
||||
|
||||
|
||||
class QueueManager(BaseManager):
|
||||
"""
|
||||
One QueueManager to rule all network Queues
|
||||
@ -17,6 +18,7 @@ QueueManager.register('get_results_q', callable=lambda:results_q )
|
||||
QueueManager.register('get_minions_q', callable=lambda: minions_q)
|
||||
QueueManager.register('get_master_q', callable=lambda: master_q)
|
||||
|
||||
|
||||
def get_qs(qm):
|
||||
"""
|
||||
pass in a QueueManager, and this function returns all relevant
|
||||
|
19
interp/config.py
Normal file
19
interp/config.py
Normal file
@ -0,0 +1,19 @@
|
||||
import os
|
||||
|
||||
import json
|
||||
|
||||
default_config = {
|
||||
'filename': '/tmp/interp.log',
|
||||
'level': 'debug',
|
||||
'size': 102400,
|
||||
'logbackup': 10,
|
||||
'pypath': None,
|
||||
}
|
||||
|
||||
try:
|
||||
with open(os.path.expanduser('~/.config/interp.json')) as config_file:
|
||||
d = json.load(config_file)
|
||||
except IOError as e:
|
||||
d = {}
|
||||
|
||||
config = dict(default_config.items() + d.items())
|
@ -1,10 +1,9 @@
|
||||
from interp.grid.delaunay import dgrid as basegrid
|
||||
from interp.tools import baker_exact_2D as exact_func
|
||||
|
||||
from itertools import product
|
||||
|
||||
import numpy as np
|
||||
|
||||
from interp.grid.delaunay import dgrid as basegrid
|
||||
|
||||
class rect_grid(basegrid):
|
||||
def __init__(self, xres = 5, yres = 5):
|
||||
xmin = 0.0
|
||||
|
@ -1,10 +1,9 @@
|
||||
from interp.grid.delaunay import dgrid as basegrid
|
||||
from interp.tools import baker_exact_3D, log
|
||||
|
||||
from itertools import product
|
||||
|
||||
import numpy as np
|
||||
|
||||
from interp.grid.delaunay import dgrid as basegrid
|
||||
|
||||
class rect_grid(basegrid):
|
||||
def __init__(self, xres = 5, yres = 5, zres = 5):
|
||||
xmin = 0.0
|
||||
@ -22,7 +21,6 @@ class rect_grid(basegrid):
|
||||
zspan = zmaz - zmin
|
||||
zdel = zspan / float(zres - 1)
|
||||
|
||||
|
||||
verts = []
|
||||
q = np.zeros(xres * yres * zres)
|
||||
for x in xrange(xres):
|
||||
@ -41,8 +39,6 @@ class random_grid(rect_grid):
|
||||
def __init__(self, num_verts = 100):
|
||||
verts = []
|
||||
|
||||
r = np.random
|
||||
|
||||
appx_side_res = int(np.power(num_verts, 1/3.0))
|
||||
delta = 1.0 / float(appx_side_res)
|
||||
|
||||
|
@ -1,4 +1,3 @@
|
||||
import sys
|
||||
from collections import defaultdict
|
||||
import pickle
|
||||
|
||||
@ -9,11 +8,16 @@ from scipy.spatial import KDTree
|
||||
|
||||
from interp.baker import run_baker
|
||||
from interp.baker import get_phis
|
||||
import interp
|
||||
|
||||
import logging
|
||||
log = logging.getLogger("interp")
|
||||
|
||||
MAX_SEARCH_COUNT = 256
|
||||
TOL = 1e-8
|
||||
|
||||
__version__ = interp.__version__
|
||||
|
||||
|
||||
class grid(object):
|
||||
def __init__(self, verts=None, q=None):
|
||||
@ -60,7 +64,8 @@ class grid(object):
|
||||
attempts += 1
|
||||
|
||||
if attempts > MAX_SEARCH_COUNT:
|
||||
raise Exception("Is the search becoming exhaustive? (%d attempts)" % attempts)
|
||||
raise Exception("Is the search becoming exhaustive?'\
|
||||
'(%d attempts)" % attempts)
|
||||
|
||||
cur_cell = cells_to_check.pop(0)
|
||||
checked_cells.append(cur_cell)
|
||||
@ -70,7 +75,8 @@ class grid(object):
|
||||
continue
|
||||
|
||||
for neighbor in cur_cell.neighbors:
|
||||
if (neighbor not in checked_cells) and (neighbor not in cells_to_check):
|
||||
if (neighbor not in checked_cells) \
|
||||
and (neighbor not in cells_to_check):
|
||||
cells_to_check.append(neighbor)
|
||||
|
||||
if not simplex:
|
||||
@ -85,8 +91,8 @@ class grid(object):
|
||||
|
||||
def create_mesh(self, indicies):
|
||||
"""
|
||||
this function takes a list of indicies, and then creates and returns a
|
||||
grid object (collection of verts and q).
|
||||
this function takes a list of indicies, and then creates and
|
||||
returns a grid object (collection of verts and q).
|
||||
|
||||
note: the input is indicies, the grid contains verts
|
||||
"""
|
||||
@ -140,7 +146,7 @@ class grid(object):
|
||||
this returns a generator that should be fed into qdelaunay
|
||||
"""
|
||||
|
||||
yield str(len(self.verts[0]));
|
||||
yield str(len(self.verts[0]))
|
||||
yield '%d' % len(self.verts)
|
||||
|
||||
for p in self.verts:
|
||||
@ -174,14 +180,17 @@ class grid(object):
|
||||
largest_number = np.max(np.abs(self.q))
|
||||
self.q *= new_max / largest_number
|
||||
|
||||
|
||||
def dump_to_blender_files(self, pfile = '/tmp/points.p', cfile = '/tmp/cells.p'):
|
||||
def dump_to_blender_files(self,
|
||||
pfile='/tmp/points.p', cfile='/tmp/cells.p'):
|
||||
if len(self.verts[0]) == 2:
|
||||
pickle.dump([(p[0], p[1], 0.0) for p in self.verts], open(pfile, 'w'))
|
||||
pickle.dump([(p[0], p[1], 0.0) for p in self.verts],
|
||||
open(pfile, 'w'))
|
||||
else:
|
||||
pickle.dump([(p[0], p[1], p[2]) for p in self.verts], open(pfile, 'w'))
|
||||
pickle.dump([(p[0], p[1], p[2]) for p in self.verts],
|
||||
open(pfile, 'w'))
|
||||
|
||||
pickle.dump([f.verts for f in self.cells.itervalues()], open(cfile, 'w'))
|
||||
pickle.dump([f.verts for f in self.cells.itervalues()],
|
||||
open(cfile, 'w'))
|
||||
|
||||
def get_xml(self):
|
||||
doc = Document()
|
||||
@ -200,6 +209,7 @@ class grid(object):
|
||||
|
||||
def toxml(self):
|
||||
return self.get_xml().toxml()
|
||||
|
||||
def toprettyxml(self):
|
||||
return self.get_xml().toprettyxml()
|
||||
|
||||
@ -227,9 +237,9 @@ class cell(object):
|
||||
X = point of interest
|
||||
G = corrensponding grid object (G.verts)
|
||||
|
||||
because of the way i'm storing things, a cell simply stores indicies,
|
||||
and so one must pass in a reference to the grid object containing real
|
||||
verts.
|
||||
because of the way i'm storing things, a cell simply stores
|
||||
indicies, and so one must pass in a reference to the grid object
|
||||
containing real verts.
|
||||
|
||||
this simply calls grid.simplex.contains
|
||||
"""
|
||||
@ -248,8 +258,6 @@ class cell(object):
|
||||
__repr__ = __str__
|
||||
|
||||
|
||||
TOL = 1e-8
|
||||
|
||||
def contains(X, R):
|
||||
"""
|
||||
tests if X (point) is in R
|
||||
|
@ -1,7 +1,4 @@
|
||||
import pickle
|
||||
|
||||
from itertools import combinations
|
||||
from collections import defaultdict
|
||||
|
||||
import numpy as np
|
||||
from scipy.spatial import KDTree
|
||||
@ -36,7 +33,7 @@ class ggrid(grid):
|
||||
|
||||
|
||||
gmsh_file.readline() # $MeshFormat
|
||||
fmat = gmsh_file.readline()
|
||||
gmsh_file.readline()
|
||||
gmsh_file.readline() # $EndMeshFormat
|
||||
|
||||
gmsh_file.readline() # $Nodes
|
||||
|
@ -1,9 +1,5 @@
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
|
||||
import logging
|
||||
log = logging.getLogger("interp")
|
||||
|
||||
def rms(errors):
|
||||
"""
|
||||
@ -19,62 +15,59 @@ def rms(errors):
|
||||
|
||||
return np.sqrt((errors ** 2).mean())
|
||||
|
||||
|
||||
def baker_exact_2D(X):
|
||||
"""
|
||||
the exact function (2D) used from baker's article (for testing, slightly
|
||||
modified)
|
||||
the exact function (2D) used from baker's article (for testing,
|
||||
slightly modified)
|
||||
"""
|
||||
x, y = X
|
||||
|
||||
answer = np.power((np.sin(x * np.pi) * np.cos(y * np.pi)), 2)
|
||||
log.debug(answer)
|
||||
return answer
|
||||
|
||||
|
||||
def friendly_exact_2D(X):
|
||||
"""
|
||||
A friendlier 2D func
|
||||
"""
|
||||
x, y = X
|
||||
answer = 1.0 + x * x + y * y
|
||||
log.debug(answer)
|
||||
return answer
|
||||
|
||||
|
||||
def baker_exact_3D(X):
|
||||
"""
|
||||
the exact function (3D) used from baker's article (for testing)
|
||||
"""
|
||||
x = X[0]
|
||||
y = X[1]
|
||||
z = X[2]
|
||||
answer = np.power((np.sin(x * np.pi / 2.0) * np.sin(y * np.pi / 2.0) * np.sin(z * np.pi / 2.0)), 2)
|
||||
log.debug(answer)
|
||||
x, y, z = X
|
||||
answer = np.power((np.sin(x * np.pi / 2.0) * np.sin(y * np.pi / 2.0) *
|
||||
np.sin(z * np.pi / 2.0)), 2)
|
||||
return answer
|
||||
|
||||
|
||||
def friendly_exact_3D(X):
|
||||
x, y, z = X
|
||||
return 1 + x * x + y * y + z * z
|
||||
|
||||
|
||||
def scipy_exact_2D(X):
|
||||
x, y = X
|
||||
return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2
|
||||
return x * (1 - x) * np.cos(4 * np.pi * x) *\
|
||||
np.sin(4 * np.pi * y ** 2) ** 2
|
||||
|
||||
|
||||
def improved_answer(answer, exact):
|
||||
if not answer['error']:
|
||||
# was probably just a linear interpolation
|
||||
return False
|
||||
|
||||
log.debug('qlin: %s' % answer['qlin'])
|
||||
log.debug('error: %s' % answer['error'])
|
||||
log.debug('final: %s' % answer['final'])
|
||||
log.debug('exact: %s' % exact)
|
||||
|
||||
if np.abs(answer['final'] - exact) <= np.abs(answer['qlin'] - exact):
|
||||
log.debug(":) improved result")
|
||||
return True
|
||||
else:
|
||||
log.debug(":( damaged result")
|
||||
return False
|
||||
|
||||
|
||||
def improved(qlin, err, final, exact):
|
||||
if np.abs(final - exact) <= np.abs(qlin - exact):
|
||||
return True
|
||||
|
@ -3,14 +3,12 @@
|
||||
import unittest
|
||||
|
||||
from interp import baker
|
||||
from interp import grid
|
||||
|
||||
import numpy as np
|
||||
import scipy.spatial
|
||||
|
||||
class Test(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.l = [[-1, 1], [-1, 0], [-1, 1], [0, -1], [0, 0], [0, 1], [1, -1], [1, 0], [1, 1]]
|
||||
self.l = [[-1, 1], [-1, 0], [-1, 1], [0, -1],
|
||||
[0, 0], [0, 1], [1, -1], [1, 0], [1, 1]]
|
||||
self.all_points = [
|
||||
[0, 0], # 0
|
||||
[1, 0], # 1
|
||||
@ -29,11 +27,15 @@ class Test(unittest.TestCase):
|
||||
def testImports(self):
|
||||
import numpy
|
||||
import scipy
|
||||
import interp.grid
|
||||
import interp.baker
|
||||
import interp.grid as gv
|
||||
import interp.baker as bv
|
||||
|
||||
numpy.__version__
|
||||
scipy.__version__
|
||||
|
||||
gv, bv
|
||||
|
||||
def testGetPhis(self):
|
||||
|
||||
X = [0, 0]
|
||||
r = [[-1, -1], [0, 2], [1, -1]]
|
||||
|
||||
@ -45,7 +47,6 @@ class Test(unittest.TestCase):
|
||||
self.assertAlmostEqual(a, b)
|
||||
|
||||
def testGetPhis2(self):
|
||||
|
||||
X = [0.5, 0.25]
|
||||
r = [[0, 0], [1, 0], [1, 1]]
|
||||
|
||||
@ -61,7 +62,7 @@ class Test(unittest.TestCase):
|
||||
r = [[0, 0], [1, 0], [1, 1]]
|
||||
q = [1, 0, 0]
|
||||
|
||||
phi, result = baker.qlinear(X, grid.grid(r,q))
|
||||
phi, result = baker.qlinear(X, r, q)
|
||||
|
||||
right_answer = 0.5
|
||||
|
||||
@ -71,14 +72,14 @@ class Test(unittest.TestCase):
|
||||
size_of_simplex = 3
|
||||
extra_points = 3
|
||||
|
||||
R = grid.grid(self.all_points[:size_of_simplex],
|
||||
R, R_q = (self.all_points[:size_of_simplex],
|
||||
self.q[:size_of_simplex])
|
||||
|
||||
S = grid.grid(self.all_points[size_of_simplex:size_of_simplex + extra_points],
|
||||
S, S_q = (self.all_points[size_of_simplex:size_of_simplex \
|
||||
+ extra_points],
|
||||
self.q[size_of_simplex:size_of_simplex + extra_points])
|
||||
|
||||
|
||||
answer = baker.run_baker(self.X, R, S)
|
||||
answer = baker.run_baker(self.X, R, R_q, S, S_q)
|
||||
|
||||
a = answer['abc'][0]
|
||||
b = answer['abc'][1]
|
||||
@ -90,13 +91,13 @@ class Test(unittest.TestCase):
|
||||
size_of_simplex = 3
|
||||
extra_points = 4
|
||||
|
||||
R = grid.grid(self.all_points[:size_of_simplex],
|
||||
self.q[:size_of_simplex])
|
||||
R, R_q = (self.all_points[:size_of_simplex], self.q[:size_of_simplex])
|
||||
|
||||
S = grid.grid(self.all_points[size_of_simplex:size_of_simplex + extra_points],
|
||||
S, S_q = (self.all_points[size_of_simplex:size_of_simplex \
|
||||
+ extra_points],
|
||||
self.q[size_of_simplex:size_of_simplex + extra_points])
|
||||
|
||||
answer = baker.run_baker(self.X, R, S)
|
||||
answer = baker.run_baker(self.X, R, R_q, S, S_q)
|
||||
|
||||
a, b, c = sorted(answer['abc'])
|
||||
aa, bb, cc = sorted((2 / 3.0, 2 / 3.0, 1 / 3.0))
|
||||
@ -109,13 +110,12 @@ class Test(unittest.TestCase):
|
||||
size_of_simplex = 3
|
||||
extra_points = 5
|
||||
|
||||
R = grid.grid(self.all_points[:size_of_simplex],
|
||||
self.q[:size_of_simplex])
|
||||
R, R_q = (self.all_points[:size_of_simplex], self.q[:size_of_simplex])
|
||||
|
||||
S = grid.grid(self.all_points[size_of_simplex:size_of_simplex + extra_points],
|
||||
S, S_q = (self.all_points[size_of_simplex:size_of_simplex \
|
||||
+ extra_points],
|
||||
self.q[size_of_simplex:size_of_simplex + extra_points])
|
||||
|
||||
answer = baker.run_baker(self.X, R, S)
|
||||
answer = baker.run_baker(self.X, R, R_q, S, S_q)
|
||||
|
||||
a = answer['abc'][0]
|
||||
b = answer['abc'][1]
|
||||
@ -132,13 +132,13 @@ class Test(unittest.TestCase):
|
||||
size_of_simplex = 3
|
||||
extra_points = 6
|
||||
|
||||
R = grid.grid(self.all_points[:size_of_simplex],
|
||||
R, R_q = (self.all_points[:size_of_simplex],
|
||||
self.q[:size_of_simplex])
|
||||
|
||||
S = grid.grid(self.all_points[size_of_simplex:size_of_simplex + extra_points],
|
||||
S, S_q = (self.all_points[size_of_simplex:size_of_simplex \
|
||||
+ extra_points],
|
||||
self.q[size_of_simplex:size_of_simplex + extra_points])
|
||||
answer = baker.run_baker(self.X, R, R_q, S, S_q)
|
||||
|
||||
answer = baker.run_baker(self.X, R, S)
|
||||
a = answer['abc'][0]
|
||||
b = answer['abc'][1]
|
||||
c = answer['abc'][2]
|
||||
|
@ -8,11 +8,13 @@ import numpy as np
|
||||
|
||||
from interp.grid import contains
|
||||
|
||||
|
||||
def exact_func(point):
|
||||
x = point[0]
|
||||
y = point[1]
|
||||
return 0.5 + x * x + y
|
||||
|
||||
|
||||
def calculate_error_term(self, a, b, c, d, e, f):
|
||||
B = np.array([
|
||||
self.p1[a] * self.p1[b], self.p1[c] * self.p1[d], self.p1[e] * self.p1[f],
|
||||
@ -20,6 +22,7 @@ def calculate_error_term(self, a,b,c,d,e,f):
|
||||
self.p3[a] * self.p3[b], self.p3[c] * self.p3[d], self.p3[e] * self.p3[f],
|
||||
self.p4[a] * self.p4[b], self.p4[c] * self.p4[d], self.p4[e] * self.p4[f],
|
||||
])
|
||||
|
||||
B.shape = (4, 3)
|
||||
|
||||
A = np.dot(B.T, B)
|
||||
@ -32,6 +35,7 @@ def calculate_error_term(self, a,b,c,d,e,f):
|
||||
abc[2] * self.phis[e] * self.phis[f]
|
||||
return err
|
||||
|
||||
|
||||
class Test(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.verts = [
|
||||
@ -40,28 +44,26 @@ class Test(unittest.TestCase):
|
||||
[4, 8], # 2
|
||||
[0, 7], # 3, 1
|
||||
[5, 0], # 4, 2
|
||||
[10, 5], # 5, 3
|
||||
[0, 5], # 5, 3
|
||||
[8, 9], # 6, 4
|
||||
]
|
||||
|
||||
|
||||
self.q = [exact_func(v) for v in self.verts]
|
||||
|
||||
self.g = grid(self.verts, self.q)
|
||||
self.R = grid(self.verts[:3], self.q[:3])
|
||||
self.S = grid(self.verts[3:], self.q[3:])
|
||||
self.R, self.R_q = (self.verts[:3], self.q[:3])
|
||||
self.S, self.S_q = (self.verts[3:], self.q[3:])
|
||||
|
||||
self.p1, self.ql1 = baker.qlinear(self.verts[3], self.R)
|
||||
self.p2, self.ql2 = baker.qlinear(self.verts[4], self.R)
|
||||
self.p3, self.ql3 = baker.qlinear(self.verts[5], self.R)
|
||||
self.p4, self.ql4 = baker.qlinear(self.verts[6], self.R)
|
||||
self.p1, self.ql1 = baker.qlinear(self.verts[3], self.R, self.q)
|
||||
self.p2, self.ql2 = baker.qlinear(self.verts[4], self.R, self.q)
|
||||
self.p3, self.ql3 = baker.qlinear(self.verts[5], self.R, self.q)
|
||||
self.p4, self.ql4 = baker.qlinear(self.verts[6], self.R, self.q)
|
||||
|
||||
self.q1 = exact_func(self.verts[3])
|
||||
self.q2 = exact_func(self.verts[4])
|
||||
self.q3 = exact_func(self.verts[5])
|
||||
self.q4 = exact_func(self.verts[6])
|
||||
|
||||
|
||||
self.w = np.array([
|
||||
self.q1 - self.ql1,
|
||||
self.q2 - self.ql2,
|
||||
@ -73,26 +75,29 @@ class Test(unittest.TestCase):
|
||||
|
||||
self.g = grid(self.verts, self.q)
|
||||
|
||||
self.phis, self.qlin = baker.qlinear(self.X, self.R)
|
||||
self.phis, self.qlin = baker.qlinear(self.X, self.R, self.q)
|
||||
self.exact = exact_func(self.X)
|
||||
self.answer = baker.run_baker(self.X,self.R,self.S)
|
||||
|
||||
self.answer = baker.run_baker(self.X, self.R,
|
||||
self.R_q, self.S, self.S_q)
|
||||
|
||||
def test_R_contains_X(self):
|
||||
self.assertTrue(contains(self.X, self.R.verts))
|
||||
self.assertTrue(contains(self.X, self.R))
|
||||
|
||||
def test_1(self):
|
||||
a, b, c, d, e, f = (0, 1, 1, 2, 2, 0)
|
||||
err = calculate_error_term(self, a, b, c, d, e, f)
|
||||
self.assertAlmostEqual(err, self.answer['error'])
|
||||
|
||||
def test_swap_first_elements(self):
|
||||
a, b, c, d, e, f = (1, 0, 1, 2, 2, 0)
|
||||
err = calculate_error_term(self, a, b, c, d, e, f)
|
||||
self.assertAlmostEqual(err, self.answer['error'])
|
||||
|
||||
def test_swap_two_pairs(self):
|
||||
a, b, c, d, e, f = (1, 2, 0, 1, 2, 0)
|
||||
err = calculate_error_term(self, a, b, c, d, e, f)
|
||||
self.assertAlmostEqual(err, self.answer['error'])
|
||||
|
||||
def test_swap_all_pairs(self):
|
||||
a, b, c, d, e, f = (0, 2, 0, 1, 2, 1)
|
||||
err = calculate_error_term(self, a, b, c, d, e, f)
|
||||
|
@ -2,10 +2,7 @@
|
||||
|
||||
import unittest
|
||||
from interp.baker import get_phis, qlinear
|
||||
from interp.grid import grid
|
||||
|
||||
import numpy as np
|
||||
import scipy.spatial
|
||||
|
||||
class Test(unittest.TestCase):
|
||||
def setUp(self):
|
||||
@ -18,7 +15,6 @@ class Test(unittest.TestCase):
|
||||
]
|
||||
self.q = [0.0, 0.0, 0.0, 4]
|
||||
|
||||
|
||||
def testGetPhis(self):
|
||||
result = get_phis(self.X, self.r)
|
||||
right_answer = [0.25, 0.25, 0.25, 0.25]
|
||||
@ -26,9 +22,8 @@ class Test(unittest.TestCase):
|
||||
for a, b in zip(result, right_answer):
|
||||
self.assertAlmostEqual(a, b)
|
||||
|
||||
|
||||
def testQlinear(self):
|
||||
phi, result = qlinear(self.X, grid(self.r, self.q))
|
||||
phi, result = qlinear(self.X, self.r, self.q)
|
||||
result = result
|
||||
right_answer = 1.0
|
||||
self.assertAlmostEqual(result, right_answer)
|
||||
|
@ -4,18 +4,18 @@ import unittest
|
||||
|
||||
from interp.baker import run_baker
|
||||
|
||||
from interp.grid import grid
|
||||
from interp.grid import contains
|
||||
|
||||
|
||||
def exact_func(X):
|
||||
x = X[0]
|
||||
y = X[0]
|
||||
return 1 + x + y
|
||||
|
||||
|
||||
class Test(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.verts = [
|
||||
[ 0.25, 0.40], # 0
|
||||
self.g = [[0.25, 0.40], # 0
|
||||
[0.60, 0.80], # 1
|
||||
[0.65, 0.28], # 2
|
||||
[0.28, 0.65], # 3
|
||||
@ -24,47 +24,52 @@ class Test(unittest.TestCase):
|
||||
[0.80, 0.50], # 6
|
||||
[0.35, 0.15], # 7
|
||||
]
|
||||
self.q = [exact_func(p) for p in self.verts]
|
||||
|
||||
self.q = [exact_func(p) for p in self.g]
|
||||
self.X = [0.55, 0.45]
|
||||
|
||||
self.g = grid(self.verts, self.q)
|
||||
# self.g.construct_connectivity()
|
||||
self.R = self.g.create_mesh(range(3))
|
||||
|
||||
self.R = self.g[0:3]
|
||||
self.R_q = self.q[0:3]
|
||||
self.exact = exact_func(self.X)
|
||||
|
||||
|
||||
def test_R_contains_X(self):
|
||||
self.assertTrue(contains(self.X, self.R.verts))
|
||||
self.assertTrue(contains(self.X, self.R))
|
||||
|
||||
def test_RunBaker_1_extra_point(self, extra=1):
|
||||
S = self.g.create_mesh(range(3, 3 + extra))
|
||||
answer = run_baker(self.X, self.R, S, order=3)
|
||||
S = self.g[3:3 + extra]
|
||||
S_q = self.q[3:3 + extra]
|
||||
answer = run_baker(self.X, self.R, self.R_q, S, S_q, order=3)
|
||||
lin_err = abs(self.exact - answer['qlin'])
|
||||
final_err = abs(self.exact - answer['final'])
|
||||
# expected failure ...
|
||||
self.assertTrue(lin_err >= final_err)
|
||||
|
||||
def test_RunBaker_2_extra_point(self, extra=2):
|
||||
S = self.g.create_mesh(range(3, 3 + extra))
|
||||
answer = run_baker(self.X, self.R, S, order=3)
|
||||
S = self.g[3: 3 + extra]
|
||||
S_q = self.q[3:3 + extra]
|
||||
answer = run_baker(self.X, self.R, self.R_q, S, S_q, order=3)
|
||||
lin_err = abs(self.exact - answer['qlin'])
|
||||
final_err = abs(self.exact - answer['final'])
|
||||
self.assertTrue(lin_err >= final_err)
|
||||
|
||||
def test_RunBaker_3_extra_point(self, extra=3):
|
||||
S = self.g.create_mesh(range(3, 3 + extra))
|
||||
answer = run_baker(self.X, self.R, S, order=3)
|
||||
S = self.g[3: 3 + extra]
|
||||
S_q = self.q[3:3 + extra]
|
||||
answer = run_baker(self.X, self.R, self.R_q, S, S_q, order=3)
|
||||
lin_err = abs(self.exact - answer['qlin'])
|
||||
final_err = abs(self.exact - answer['final'])
|
||||
self.assertTrue(lin_err >= final_err)
|
||||
|
||||
def test_RunBaker_4_extra_point(self, extra=4):
|
||||
S = self.g.create_mesh(range(3, 3 + extra))
|
||||
answer = run_baker(self.X, self.R, S, order=3)
|
||||
S = self.g[3: 3 + extra]
|
||||
S_q = self.q[3:3 + extra]
|
||||
answer = run_baker(self.X, self.R, self.R_q, S, S_q, order=3)
|
||||
lin_err = abs(self.exact - answer['qlin'])
|
||||
final_err = abs(self.exact - answer['final'])
|
||||
self.assertTrue(lin_err >= final_err)
|
||||
|
||||
def test_RunBaker_5_extra_point(self, extra=5):
|
||||
S = self.g.create_mesh(range(3, 3 + extra))
|
||||
answer = run_baker(self.X, self.R, S, order=3)
|
||||
S = self.g[3: 3 + extra]
|
||||
S_q = self.q[3:3 + extra]
|
||||
answer = run_baker(self.X, self.R, self.R_q, S, S_q, order=3)
|
||||
lin_err = abs(self.exact - answer['qlin'])
|
||||
final_err = abs(self.exact - answer['final'])
|
||||
self.assertTrue(lin_err >= final_err)
|
||||
|
@ -4,13 +4,13 @@ import unittest
|
||||
from interp.baker import pattern
|
||||
|
||||
|
||||
|
||||
class Test(unittest.TestCase):
|
||||
def setUp(self):
|
||||
pass
|
||||
|
||||
def testImports(self):
|
||||
from interp.baker import pattern
|
||||
from interp.baker import pattern as ppp
|
||||
ppp
|
||||
|
||||
def test_baker_eq_8(self):
|
||||
b = sorted([tuple(sorted(i)) for i in ((0, 1), (1, 2), (2, 0))])
|
||||
@ -18,7 +18,8 @@ class Test(unittest.TestCase):
|
||||
self.assertEqual(b, p)
|
||||
|
||||
def test_baker_eq_17(self):
|
||||
b = sorted([tuple(sorted(i)) for i in ((0,1,1), (0,2,2), (1,0,0), (1,2,2), (2,0,0), (2,1,1), (0,1,2))])
|
||||
b = sorted([tuple(sorted(i)) for i in ((0, 1, 1), (0, 2, 2), (1, 0, 0),
|
||||
(1, 2, 2), (2, 0, 0), (2, 1, 1), (0, 1, 2))])
|
||||
p = sorted(pattern(3, 3))
|
||||
self.assertEqual(b, p)
|
||||
|
||||
@ -44,9 +45,6 @@ class Test(unittest.TestCase):
|
||||
p = sorted(pattern(4, 3))
|
||||
self.assertEqual(b, p)
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
suite = unittest.TestLoader().loadTestsFromTestCase(Test)
|
||||
unittest.TextTestRunner(verbosity=3).run(suite)
|
||||
|
@ -7,14 +7,16 @@ from interp.baker import run_baker
|
||||
from interp.grid import grid
|
||||
from interp.grid import contains
|
||||
|
||||
|
||||
def exact_func(X):
|
||||
x = X[0]
|
||||
y = X[0]
|
||||
return 1 - x * x + y * y
|
||||
|
||||
|
||||
class Test(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.points = [
|
||||
self.g = [
|
||||
[0.25, 0.40], # 0
|
||||
[0.60, 0.80], # 1
|
||||
[0.65, 0.28], # 2
|
||||
@ -24,52 +26,56 @@ class Test(unittest.TestCase):
|
||||
[0.80, 0.50], # 6
|
||||
[0.35, 0.15], # 7
|
||||
]
|
||||
self.q = [exact_func(p) for p in self.points]
|
||||
self.q = [exact_func(p) for p in self.g]
|
||||
|
||||
self.X = [0.25, 0.4001]
|
||||
self.X = [0.55, 0.45]
|
||||
|
||||
self.g = grid(self.points, self.q)
|
||||
self.R = self.g.create_mesh(range(3))
|
||||
|
||||
self.R = self.g[0:3]
|
||||
self.R_q = self.q[0:3]
|
||||
self.exact = exact_func(self.X)
|
||||
|
||||
|
||||
self.accuracy = 8
|
||||
|
||||
def test_R_contains_X(self):
|
||||
self.assertTrue(contains(self.X, self.R.verts))
|
||||
self.assertTrue(contains(self.X, self.R))
|
||||
|
||||
def test_RunBaker_1_extra_point(self, extra=1):
|
||||
S = self.g.create_mesh(range(3, 3 + extra))
|
||||
answer = run_baker(self.X, self.R, S)
|
||||
S = self.g[3: 3 + extra]
|
||||
S_q = self.q[3: 3 + extra]
|
||||
answer = run_baker(self.X, self.R, self.R_q, S, S_q)
|
||||
lin_err = abs(self.exact - answer['qlin'])
|
||||
final_err = abs(self.exact - answer['final'])
|
||||
|
||||
# I expect this one to be bad:
|
||||
# self.assertTrue(lin_err >= final_err)
|
||||
#XXX: not sure about this one:
|
||||
self.assertEqual(lin_err, final_err)
|
||||
|
||||
def test_RunBaker_2_extra_point(self, extra=2):
|
||||
S = self.g.create_mesh(range(3, 3 + extra))
|
||||
answer = run_baker(self.X, self.R, S)
|
||||
S = self.g[3: 3 + extra]
|
||||
S_q = self.q[3: 3 + extra]
|
||||
answer = run_baker(self.X, self.R, self.R_q, S, S_q)
|
||||
lin_err = abs(self.exact - answer['qlin'])
|
||||
final_err = abs(self.exact - answer['final'])
|
||||
self.assertTrue(lin_err >= final_err)
|
||||
|
||||
def test_RunBaker_3_extra_point(self, extra=3):
|
||||
S = self.g.create_mesh(range(3, 3 + extra))
|
||||
answer = run_baker(self.X, self.R, S)
|
||||
S = self.g[3: 3 + extra]
|
||||
S_q = self.q[3: 3 + extra]
|
||||
answer = run_baker(self.X, self.R, self.R_q, S, S_q)
|
||||
lin_err = abs(self.exact - answer['qlin'])
|
||||
final_err = abs(self.exact - answer['final'])
|
||||
self.assertTrue(lin_err >= final_err)
|
||||
|
||||
def test_RunBaker_4_extra_point(self, extra=4):
|
||||
S = self.g.create_mesh(range(3, 3 + extra))
|
||||
answer = run_baker(self.X, self.R, S)
|
||||
S = self.g[3: 3 + extra]
|
||||
S_q = self.q[3: 3 + extra]
|
||||
answer = run_baker(self.X, self.R, self.R_q, S, S_q)
|
||||
lin_err = abs(self.exact - answer['qlin'])
|
||||
final_err = abs(self.exact - answer['final'])
|
||||
self.assertTrue(lin_err >= final_err)
|
||||
|
||||
def test_RunBaker_5_extra_point(self, extra=5):
|
||||
S = self.g.create_mesh(range(3, 3 + extra))
|
||||
answer = run_baker(self.X, self.R, S)
|
||||
S = self.g[3: 3 + extra]
|
||||
S_q = self.q[3: 3 + extra]
|
||||
answer = run_baker(self.X, self.R, self.R_q, S, S_q)
|
||||
lin_err = abs(self.exact - answer['qlin'])
|
||||
final_err = abs(self.exact - answer['final'])
|
||||
self.assertTrue(lin_err >= final_err)
|
||||
|
Loading…
Reference in New Issue
Block a user