Major: made scripts pass pep8 and pyflakes

This commit is contained in:
Stephen M. McQuay 2011-09-17 15:38:49 -06:00
parent 1bc797a14d
commit 837a72b246
17 changed files with 835 additions and 866 deletions

View File

@ -1,40 +1 @@
import os
import logging
import logging.handlers
import json
LEVELS = {'debug': logging.DEBUG,
'info': logging.INFO,
'warning': logging.WARNING,
'error': logging.ERROR,
'critical': logging.CRITICAL}
default_config = {
'filename': '/tmp/interp.log',
'level': 'debug',
'size' : 102400,
'logbackup': 10,
'pypath': None,
}
try:
with open(os.path.expanduser('~/.config/interp.json')) as config_file:
d = json.load(config_file)
except IOError as e:
d = {}
config = dict(default_config.items() + d.items())
logger = logging.getLogger('interp')
logger.setLevel(LEVELS[config['level']])
my_format = logging.Formatter('%(asctime)s %(levelname)s (%(process)d) %(filename)s %(funcName)s:%(lineno)d %(message)s')
handler = logging.handlers.RotatingFileHandler(
config['filename'], maxBytes = config['size'] * 1024, backupCount = config['logbackup'])
handler.setFormatter(my_format)
logger.addHandler(handler)
__version__ = '0.2'

View File

@ -1,18 +1,20 @@
import sys
import numpy as np
from functools import wraps
import itertools
import interp
import logging
log = logging.getLogger('interp')
AGGRESSIVE_ERROR_SOLVE = True
RAISE_PATHOLOGICAL_EXCEPTION = False
__version__ = interp.__version__
def get_phis(X, R):
"""
The get_phis function is used to get barycentric coordonites for a
point on a triangle or tetrahedron. This is equation (*\ref{eq:qlinarea}*)
point on a triangle or tetrahedron (Equation (*\ref{eq:qlinarea}*))
in 2D:
@ -41,45 +43,27 @@ def get_phis(X, R):
# equations (*\ref{eq:lin3d}*) and (*\ref{eq:lin2d}*)
if len(X) == 2:
log.debug("running 2D")
A = np.array([
[1, 1, 1],
[R[0][0], R[1][0], R[2][0]],
[R[0][1], R[1][1], R[2][1]],
])
b = np.array([ 1,
X[0],
X[1]
])
b = np.array([1, X[0], X[1]])
elif len(X) == 3:
log.debug("running 3D")
A = np.array([
[1, 1, 1, 1],
[R[0][0], R[1][0], R[2][0], R[3][0]],
[R[0][1], R[1][1], R[2][1], R[3][1]],
[R[0][2], R[1][2], R[2][2], R[3][2]],
])
b = np.array([ 1,
X[0],
X[1],
X[2]
])
b = np.array([1, X[0], X[1], X[2]])
else:
raise Exception("inapropriate demension on X")
try:
phi = np.linalg.solve(A, b)
except np.linalg.LinAlgError as e:
msg = "calculation of phis yielded a linearly dependant system (%s)" % e
log.error(msg)
# raise Exception(msg)
phi = np.dot(np.linalg.pinv(A), b)
log.debug("phi: %s", phi)
return phi
def qlinear(X, R):
def qlinear(X, R, q):
"""
this calculates the linear portion of q from R to X
@ -89,15 +73,13 @@ def qlinear(X, R):
R = a inter.grid object; must have R.points and R.q
"""
phis = get_phis(X, R.verts)
qlin = np.sum([q_i * phi_i for q_i, phi_i in zip(R.q, phis)])
log.debug("phis: %s", phis)
log.debug("qlin: %s", qlin)
phis = get_phis(X, R)
qlin = np.sum([q_i * phi_i for q_i, phi_i in zip(q, phis)])
return phis, qlin
def get_error(phi, R, S, order = 2):
def get_error(phi, R, R_q, S, S_q, order=2):
"""
Calculate the error approximation terms, returning the unknowns
a,b, and c in equation (*\ref{eq:quadratic2d}*).
@ -106,10 +88,9 @@ def get_error(phi, R, S, order = 2):
w = [] # equation ((*\ref{eq:w}*)
cur_pattern = pattern(len(phi), order)
log.info("pattern: %s" % cur_pattern)
for (s,q) in zip(S.verts, S.q):
cur_phi, cur_qlin = qlinear(s, R)
for (s, cur_q) in zip(S, S_q):
cur_phi, cur_qlin = qlinear(s, R, R_q)
l = []
for i in cur_pattern:
cur_sum = cur_phi[i[0]]
@ -118,11 +99,7 @@ def get_error(phi, R, S, order = 2):
l.append(cur_sum)
B.append(l)
w.append(q - cur_qlin)
log.info("B: %s" % B)
log.info("w: %s" % w)
w.append(cur_q - cur_qlin)
B = np.array(B)
w = np.array(w)
@ -132,8 +109,9 @@ def get_error(phi, R, S, order = 2):
try:
abc = np.linalg.solve(A, b)
except np.linalg.LinAlgError as e:
log.error("linear calculation went bad, resorting to np.linalg.pinv: %s" % e)
except np.linalg.LinAlgError:
if not AGGRESSIVE_ERROR_SOLVE:
return None, None
abc = np.dot(np.linalg.pinv(A), b)
error_term = 0.0
@ -143,10 +121,10 @@ def get_error(phi, R, S, order = 2):
cur_sum *= phi[j]
error_term += cur_sum
log.debug("error_term: %s" % error_term)
return error_term, abc
def run_baker(X, R, S, order=2):
def run_baker(X, R, R_q, S, S_q, order=2):
"""
This is the main function to call to get an interpolation to X from the
input meshes
@ -156,23 +134,32 @@ def run_baker(X, R, S, order=2):
R = Simplex
S = extra points
"""
log.debug("order = %d" % order)
log.debug("extra points = %d" % len(S.verts))
answer = {
'qlin': None,
'error': None,
'final': None,
}
# calculate values only for the simplex triangle
phi, qlin = qlinear(X, R)
phi, qlin = qlinear(X, R, R_q)
if order == 1:
answer['qlin'] = qlin
answer['final'] = qlin
return answer
elif order in xrange(2, 11):
error_term, abc = get_error(phi, R, S, order)
error_term, abc = get_error(phi, R, R_q, S, S_q, order)
# if a pathological vertex configuration was encountered and
# AGGRESSIVE_ERROR_SOLVE is False, get_error will return (None, None)
# indicating that only linear interpolation should be performed
if (error_term is None) and (abc is None):
if RAISE_PATHOLOGICAL_EXCEPTION:
raise np.linalg.LinAlgError("Pathological Vertex Config")
answer['qlin'] = qlin
answer['final'] = qlin
return answer
else:
raise Exception('unsupported order "%d" for baker method' % order)
@ -183,8 +170,6 @@ def run_baker(X, R, S, order=2):
answer['final'] = q_final
answer['abc'] = abc
log.debug(answer)
return answer
@ -194,11 +179,11 @@ def memoize(f):
http://en.wikipedia.org/wiki/Memoize
"""
cache = {}
@wraps(f)
def memf(simplex_size, nu):
x = (simplex_size, nu)
if x not in cache:
log.debug("adding to cache: %s", x)
cache[x] = f(simplex_size, nu)
return cache[x]
return memf
@ -210,7 +195,6 @@ def pattern(simplex_size, nu):
This function returns the pattern requisite to compose the error
approximation function, and the matrix B.
"""
log.debug("pattern: simplex: %d, order: %d" % (simplex_size, nu))
r = []
for i in itertools.product(xrange(simplex_size), repeat=nu):

View File

@ -5,6 +5,7 @@ import rlcompleter
historyPath = os.path.expanduser("~/.pyhistory")
def save_history(historyPath=historyPath):
import readline
readline.write_history_file(historyPath)

View File

@ -6,6 +6,7 @@ results_q = Queue.Queue()
minions_q = Queue.Queue()
master_q = Queue.Queue()
class QueueManager(BaseManager):
"""
One QueueManager to rule all network Queues
@ -17,6 +18,7 @@ QueueManager.register('get_results_q', callable=lambda:results_q )
QueueManager.register('get_minions_q', callable=lambda: minions_q)
QueueManager.register('get_master_q', callable=lambda: master_q)
def get_qs(qm):
"""
pass in a QueueManager, and this function returns all relevant

19
interp/config.py Normal file
View File

@ -0,0 +1,19 @@
import os
import json
default_config = {
'filename': '/tmp/interp.log',
'level': 'debug',
'size': 102400,
'logbackup': 10,
'pypath': None,
}
try:
with open(os.path.expanduser('~/.config/interp.json')) as config_file:
d = json.load(config_file)
except IOError as e:
d = {}
config = dict(default_config.items() + d.items())

View File

@ -1,10 +1,9 @@
from interp.grid.delaunay import dgrid as basegrid
from interp.tools import baker_exact_2D as exact_func
from itertools import product
import numpy as np
from interp.grid.delaunay import dgrid as basegrid
class rect_grid(basegrid):
def __init__(self, xres = 5, yres = 5):
xmin = 0.0

View File

@ -1,10 +1,9 @@
from interp.grid.delaunay import dgrid as basegrid
from interp.tools import baker_exact_3D, log
from itertools import product
import numpy as np
from interp.grid.delaunay import dgrid as basegrid
class rect_grid(basegrid):
def __init__(self, xres = 5, yres = 5, zres = 5):
xmin = 0.0
@ -22,7 +21,6 @@ class rect_grid(basegrid):
zspan = zmaz - zmin
zdel = zspan / float(zres - 1)
verts = []
q = np.zeros(xres * yres * zres)
for x in xrange(xres):
@ -41,8 +39,6 @@ class random_grid(rect_grid):
def __init__(self, num_verts = 100):
verts = []
r = np.random
appx_side_res = int(np.power(num_verts, 1/3.0))
delta = 1.0 / float(appx_side_res)

View File

@ -1,4 +1,3 @@
import sys
from collections import defaultdict
import pickle
@ -9,11 +8,16 @@ from scipy.spatial import KDTree
from interp.baker import run_baker
from interp.baker import get_phis
import interp
import logging
log = logging.getLogger("interp")
MAX_SEARCH_COUNT = 256
TOL = 1e-8
__version__ = interp.__version__
class grid(object):
def __init__(self, verts=None, q=None):
@ -60,7 +64,8 @@ class grid(object):
attempts += 1
if attempts > MAX_SEARCH_COUNT:
raise Exception("Is the search becoming exhaustive? (%d attempts)" % attempts)
raise Exception("Is the search becoming exhaustive?'\
'(%d attempts)" % attempts)
cur_cell = cells_to_check.pop(0)
checked_cells.append(cur_cell)
@ -70,7 +75,8 @@ class grid(object):
continue
for neighbor in cur_cell.neighbors:
if (neighbor not in checked_cells) and (neighbor not in cells_to_check):
if (neighbor not in checked_cells) \
and (neighbor not in cells_to_check):
cells_to_check.append(neighbor)
if not simplex:
@ -85,8 +91,8 @@ class grid(object):
def create_mesh(self, indicies):
"""
this function takes a list of indicies, and then creates and returns a
grid object (collection of verts and q).
this function takes a list of indicies, and then creates and
returns a grid object (collection of verts and q).
note: the input is indicies, the grid contains verts
"""
@ -140,7 +146,7 @@ class grid(object):
this returns a generator that should be fed into qdelaunay
"""
yield str(len(self.verts[0]));
yield str(len(self.verts[0]))
yield '%d' % len(self.verts)
for p in self.verts:
@ -174,14 +180,17 @@ class grid(object):
largest_number = np.max(np.abs(self.q))
self.q *= new_max / largest_number
def dump_to_blender_files(self, pfile = '/tmp/points.p', cfile = '/tmp/cells.p'):
def dump_to_blender_files(self,
pfile='/tmp/points.p', cfile='/tmp/cells.p'):
if len(self.verts[0]) == 2:
pickle.dump([(p[0], p[1], 0.0) for p in self.verts], open(pfile, 'w'))
pickle.dump([(p[0], p[1], 0.0) for p in self.verts],
open(pfile, 'w'))
else:
pickle.dump([(p[0], p[1], p[2]) for p in self.verts], open(pfile, 'w'))
pickle.dump([(p[0], p[1], p[2]) for p in self.verts],
open(pfile, 'w'))
pickle.dump([f.verts for f in self.cells.itervalues()], open(cfile, 'w'))
pickle.dump([f.verts for f in self.cells.itervalues()],
open(cfile, 'w'))
def get_xml(self):
doc = Document()
@ -200,6 +209,7 @@ class grid(object):
def toxml(self):
return self.get_xml().toxml()
def toprettyxml(self):
return self.get_xml().toprettyxml()
@ -227,9 +237,9 @@ class cell(object):
X = point of interest
G = corrensponding grid object (G.verts)
because of the way i'm storing things, a cell simply stores indicies,
and so one must pass in a reference to the grid object containing real
verts.
because of the way i'm storing things, a cell simply stores
indicies, and so one must pass in a reference to the grid object
containing real verts.
this simply calls grid.simplex.contains
"""
@ -248,8 +258,6 @@ class cell(object):
__repr__ = __str__
TOL = 1e-8
def contains(X, R):
"""
tests if X (point) is in R

View File

@ -1,7 +1,4 @@
import pickle
from itertools import combinations
from collections import defaultdict
import numpy as np
from scipy.spatial import KDTree
@ -36,7 +33,7 @@ class ggrid(grid):
gmsh_file.readline() # $MeshFormat
fmat = gmsh_file.readline()
gmsh_file.readline()
gmsh_file.readline() # $EndMeshFormat
gmsh_file.readline() # $Nodes

View File

@ -1,9 +1,5 @@
import os
import numpy as np
import logging
log = logging.getLogger("interp")
def rms(errors):
"""
@ -19,62 +15,59 @@ def rms(errors):
return np.sqrt((errors ** 2).mean())
def baker_exact_2D(X):
"""
the exact function (2D) used from baker's article (for testing, slightly
modified)
the exact function (2D) used from baker's article (for testing,
slightly modified)
"""
x, y = X
answer = np.power((np.sin(x * np.pi) * np.cos(y * np.pi)), 2)
log.debug(answer)
return answer
def friendly_exact_2D(X):
"""
A friendlier 2D func
"""
x, y = X
answer = 1.0 + x * x + y * y
log.debug(answer)
return answer
def baker_exact_3D(X):
"""
the exact function (3D) used from baker's article (for testing)
"""
x = X[0]
y = X[1]
z = X[2]
answer = np.power((np.sin(x * np.pi / 2.0) * np.sin(y * np.pi / 2.0) * np.sin(z * np.pi / 2.0)), 2)
log.debug(answer)
x, y, z = X
answer = np.power((np.sin(x * np.pi / 2.0) * np.sin(y * np.pi / 2.0) *
np.sin(z * np.pi / 2.0)), 2)
return answer
def friendly_exact_3D(X):
x, y, z = X
return 1 + x * x + y * y + z * z
def scipy_exact_2D(X):
x, y = X
return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2
return x * (1 - x) * np.cos(4 * np.pi * x) *\
np.sin(4 * np.pi * y ** 2) ** 2
def improved_answer(answer, exact):
if not answer['error']:
# was probably just a linear interpolation
return False
log.debug('qlin: %s' % answer['qlin'])
log.debug('error: %s' % answer['error'])
log.debug('final: %s' % answer['final'])
log.debug('exact: %s' % exact)
if np.abs(answer['final'] - exact) <= np.abs(answer['qlin'] - exact):
log.debug(":) improved result")
return True
else:
log.debug(":( damaged result")
return False
def improved(qlin, err, final, exact):
if np.abs(final - exact) <= np.abs(qlin - exact):
return True

View File

@ -3,14 +3,12 @@
import unittest
from interp import baker
from interp import grid
import numpy as np
import scipy.spatial
class Test(unittest.TestCase):
def setUp(self):
self.l = [[-1, 1], [-1, 0], [-1, 1], [0, -1], [0, 0], [0, 1], [1, -1], [1, 0], [1, 1]]
self.l = [[-1, 1], [-1, 0], [-1, 1], [0, -1],
[0, 0], [0, 1], [1, -1], [1, 0], [1, 1]]
self.all_points = [
[0, 0], # 0
[1, 0], # 1
@ -29,11 +27,15 @@ class Test(unittest.TestCase):
def testImports(self):
import numpy
import scipy
import interp.grid
import interp.baker
import interp.grid as gv
import interp.baker as bv
numpy.__version__
scipy.__version__
gv, bv
def testGetPhis(self):
X = [0, 0]
r = [[-1, -1], [0, 2], [1, -1]]
@ -45,7 +47,6 @@ class Test(unittest.TestCase):
self.assertAlmostEqual(a, b)
def testGetPhis2(self):
X = [0.5, 0.25]
r = [[0, 0], [1, 0], [1, 1]]
@ -61,7 +62,7 @@ class Test(unittest.TestCase):
r = [[0, 0], [1, 0], [1, 1]]
q = [1, 0, 0]
phi, result = baker.qlinear(X, grid.grid(r,q))
phi, result = baker.qlinear(X, r, q)
right_answer = 0.5
@ -71,14 +72,14 @@ class Test(unittest.TestCase):
size_of_simplex = 3
extra_points = 3
R = grid.grid(self.all_points[:size_of_simplex],
R, R_q = (self.all_points[:size_of_simplex],
self.q[:size_of_simplex])
S = grid.grid(self.all_points[size_of_simplex:size_of_simplex + extra_points],
S, S_q = (self.all_points[size_of_simplex:size_of_simplex \
+ extra_points],
self.q[size_of_simplex:size_of_simplex + extra_points])
answer = baker.run_baker(self.X, R, S)
answer = baker.run_baker(self.X, R, R_q, S, S_q)
a = answer['abc'][0]
b = answer['abc'][1]
@ -90,13 +91,13 @@ class Test(unittest.TestCase):
size_of_simplex = 3
extra_points = 4
R = grid.grid(self.all_points[:size_of_simplex],
self.q[:size_of_simplex])
R, R_q = (self.all_points[:size_of_simplex], self.q[:size_of_simplex])
S = grid.grid(self.all_points[size_of_simplex:size_of_simplex + extra_points],
S, S_q = (self.all_points[size_of_simplex:size_of_simplex \
+ extra_points],
self.q[size_of_simplex:size_of_simplex + extra_points])
answer = baker.run_baker(self.X, R, S)
answer = baker.run_baker(self.X, R, R_q, S, S_q)
a, b, c = sorted(answer['abc'])
aa, bb, cc = sorted((2 / 3.0, 2 / 3.0, 1 / 3.0))
@ -109,13 +110,12 @@ class Test(unittest.TestCase):
size_of_simplex = 3
extra_points = 5
R = grid.grid(self.all_points[:size_of_simplex],
self.q[:size_of_simplex])
R, R_q = (self.all_points[:size_of_simplex], self.q[:size_of_simplex])
S = grid.grid(self.all_points[size_of_simplex:size_of_simplex + extra_points],
S, S_q = (self.all_points[size_of_simplex:size_of_simplex \
+ extra_points],
self.q[size_of_simplex:size_of_simplex + extra_points])
answer = baker.run_baker(self.X, R, S)
answer = baker.run_baker(self.X, R, R_q, S, S_q)
a = answer['abc'][0]
b = answer['abc'][1]
@ -132,13 +132,13 @@ class Test(unittest.TestCase):
size_of_simplex = 3
extra_points = 6
R = grid.grid(self.all_points[:size_of_simplex],
R, R_q = (self.all_points[:size_of_simplex],
self.q[:size_of_simplex])
S = grid.grid(self.all_points[size_of_simplex:size_of_simplex + extra_points],
S, S_q = (self.all_points[size_of_simplex:size_of_simplex \
+ extra_points],
self.q[size_of_simplex:size_of_simplex + extra_points])
answer = baker.run_baker(self.X, R, R_q, S, S_q)
answer = baker.run_baker(self.X, R, S)
a = answer['abc'][0]
b = answer['abc'][1]
c = answer['abc'][2]

View File

@ -8,11 +8,13 @@ import numpy as np
from interp.grid import contains
def exact_func(point):
x = point[0]
y = point[1]
return 0.5 + x * x + y
def calculate_error_term(self, a, b, c, d, e, f):
B = np.array([
self.p1[a] * self.p1[b], self.p1[c] * self.p1[d], self.p1[e] * self.p1[f],
@ -20,6 +22,7 @@ def calculate_error_term(self, a,b,c,d,e,f):
self.p3[a] * self.p3[b], self.p3[c] * self.p3[d], self.p3[e] * self.p3[f],
self.p4[a] * self.p4[b], self.p4[c] * self.p4[d], self.p4[e] * self.p4[f],
])
B.shape = (4, 3)
A = np.dot(B.T, B)
@ -32,6 +35,7 @@ def calculate_error_term(self, a,b,c,d,e,f):
abc[2] * self.phis[e] * self.phis[f]
return err
class Test(unittest.TestCase):
def setUp(self):
self.verts = [
@ -40,28 +44,26 @@ class Test(unittest.TestCase):
[4, 8], # 2
[0, 7], # 3, 1
[5, 0], # 4, 2
[10, 5], # 5, 3
[0, 5], # 5, 3
[8, 9], # 6, 4
]
self.q = [exact_func(v) for v in self.verts]
self.g = grid(self.verts, self.q)
self.R = grid(self.verts[:3], self.q[:3])
self.S = grid(self.verts[3:], self.q[3:])
self.R, self.R_q = (self.verts[:3], self.q[:3])
self.S, self.S_q = (self.verts[3:], self.q[3:])
self.p1, self.ql1 = baker.qlinear(self.verts[3], self.R)
self.p2, self.ql2 = baker.qlinear(self.verts[4], self.R)
self.p3, self.ql3 = baker.qlinear(self.verts[5], self.R)
self.p4, self.ql4 = baker.qlinear(self.verts[6], self.R)
self.p1, self.ql1 = baker.qlinear(self.verts[3], self.R, self.q)
self.p2, self.ql2 = baker.qlinear(self.verts[4], self.R, self.q)
self.p3, self.ql3 = baker.qlinear(self.verts[5], self.R, self.q)
self.p4, self.ql4 = baker.qlinear(self.verts[6], self.R, self.q)
self.q1 = exact_func(self.verts[3])
self.q2 = exact_func(self.verts[4])
self.q3 = exact_func(self.verts[5])
self.q4 = exact_func(self.verts[6])
self.w = np.array([
self.q1 - self.ql1,
self.q2 - self.ql2,
@ -73,26 +75,29 @@ class Test(unittest.TestCase):
self.g = grid(self.verts, self.q)
self.phis, self.qlin = baker.qlinear(self.X, self.R)
self.phis, self.qlin = baker.qlinear(self.X, self.R, self.q)
self.exact = exact_func(self.X)
self.answer = baker.run_baker(self.X,self.R,self.S)
self.answer = baker.run_baker(self.X, self.R,
self.R_q, self.S, self.S_q)
def test_R_contains_X(self):
self.assertTrue(contains(self.X, self.R.verts))
self.assertTrue(contains(self.X, self.R))
def test_1(self):
a, b, c, d, e, f = (0, 1, 1, 2, 2, 0)
err = calculate_error_term(self, a, b, c, d, e, f)
self.assertAlmostEqual(err, self.answer['error'])
def test_swap_first_elements(self):
a, b, c, d, e, f = (1, 0, 1, 2, 2, 0)
err = calculate_error_term(self, a, b, c, d, e, f)
self.assertAlmostEqual(err, self.answer['error'])
def test_swap_two_pairs(self):
a, b, c, d, e, f = (1, 2, 0, 1, 2, 0)
err = calculate_error_term(self, a, b, c, d, e, f)
self.assertAlmostEqual(err, self.answer['error'])
def test_swap_all_pairs(self):
a, b, c, d, e, f = (0, 2, 0, 1, 2, 1)
err = calculate_error_term(self, a, b, c, d, e, f)

View File

@ -2,10 +2,7 @@
import unittest
from interp.baker import get_phis, qlinear
from interp.grid import grid
import numpy as np
import scipy.spatial
class Test(unittest.TestCase):
def setUp(self):
@ -18,7 +15,6 @@ class Test(unittest.TestCase):
]
self.q = [0.0, 0.0, 0.0, 4]
def testGetPhis(self):
result = get_phis(self.X, self.r)
right_answer = [0.25, 0.25, 0.25, 0.25]
@ -26,9 +22,8 @@ class Test(unittest.TestCase):
for a, b in zip(result, right_answer):
self.assertAlmostEqual(a, b)
def testQlinear(self):
phi, result = qlinear(self.X, grid(self.r, self.q))
phi, result = qlinear(self.X, self.r, self.q)
result = result
right_answer = 1.0
self.assertAlmostEqual(result, right_answer)

View File

@ -4,18 +4,18 @@ import unittest
from interp.baker import run_baker
from interp.grid import grid
from interp.grid import contains
def exact_func(X):
x = X[0]
y = X[0]
return 1 + x + y
class Test(unittest.TestCase):
def setUp(self):
self.verts = [
[ 0.25, 0.40], # 0
self.g = [[0.25, 0.40], # 0
[0.60, 0.80], # 1
[0.65, 0.28], # 2
[0.28, 0.65], # 3
@ -24,47 +24,52 @@ class Test(unittest.TestCase):
[0.80, 0.50], # 6
[0.35, 0.15], # 7
]
self.q = [exact_func(p) for p in self.verts]
self.q = [exact_func(p) for p in self.g]
self.X = [0.55, 0.45]
self.g = grid(self.verts, self.q)
# self.g.construct_connectivity()
self.R = self.g.create_mesh(range(3))
self.R = self.g[0:3]
self.R_q = self.q[0:3]
self.exact = exact_func(self.X)
def test_R_contains_X(self):
self.assertTrue(contains(self.X, self.R.verts))
self.assertTrue(contains(self.X, self.R))
def test_RunBaker_1_extra_point(self, extra=1):
S = self.g.create_mesh(range(3, 3 + extra))
answer = run_baker(self.X, self.R, S, order=3)
S = self.g[3:3 + extra]
S_q = self.q[3:3 + extra]
answer = run_baker(self.X, self.R, self.R_q, S, S_q, order=3)
lin_err = abs(self.exact - answer['qlin'])
final_err = abs(self.exact - answer['final'])
# expected failure ...
self.assertTrue(lin_err >= final_err)
def test_RunBaker_2_extra_point(self, extra=2):
S = self.g.create_mesh(range(3, 3 + extra))
answer = run_baker(self.X, self.R, S, order=3)
S = self.g[3: 3 + extra]
S_q = self.q[3:3 + extra]
answer = run_baker(self.X, self.R, self.R_q, S, S_q, order=3)
lin_err = abs(self.exact - answer['qlin'])
final_err = abs(self.exact - answer['final'])
self.assertTrue(lin_err >= final_err)
def test_RunBaker_3_extra_point(self, extra=3):
S = self.g.create_mesh(range(3, 3 + extra))
answer = run_baker(self.X, self.R, S, order=3)
S = self.g[3: 3 + extra]
S_q = self.q[3:3 + extra]
answer = run_baker(self.X, self.R, self.R_q, S, S_q, order=3)
lin_err = abs(self.exact - answer['qlin'])
final_err = abs(self.exact - answer['final'])
self.assertTrue(lin_err >= final_err)
def test_RunBaker_4_extra_point(self, extra=4):
S = self.g.create_mesh(range(3, 3 + extra))
answer = run_baker(self.X, self.R, S, order=3)
S = self.g[3: 3 + extra]
S_q = self.q[3:3 + extra]
answer = run_baker(self.X, self.R, self.R_q, S, S_q, order=3)
lin_err = abs(self.exact - answer['qlin'])
final_err = abs(self.exact - answer['final'])
self.assertTrue(lin_err >= final_err)
def test_RunBaker_5_extra_point(self, extra=5):
S = self.g.create_mesh(range(3, 3 + extra))
answer = run_baker(self.X, self.R, S, order=3)
S = self.g[3: 3 + extra]
S_q = self.q[3:3 + extra]
answer = run_baker(self.X, self.R, self.R_q, S, S_q, order=3)
lin_err = abs(self.exact - answer['qlin'])
final_err = abs(self.exact - answer['final'])
self.assertTrue(lin_err >= final_err)

View File

@ -4,13 +4,13 @@ import unittest
from interp.baker import pattern
class Test(unittest.TestCase):
def setUp(self):
pass
def testImports(self):
from interp.baker import pattern
from interp.baker import pattern as ppp
ppp
def test_baker_eq_8(self):
b = sorted([tuple(sorted(i)) for i in ((0, 1), (1, 2), (2, 0))])
@ -18,7 +18,8 @@ class Test(unittest.TestCase):
self.assertEqual(b, p)
def test_baker_eq_17(self):
b = sorted([tuple(sorted(i)) for i in ((0,1,1), (0,2,2), (1,0,0), (1,2,2), (2,0,0), (2,1,1), (0,1,2))])
b = sorted([tuple(sorted(i)) for i in ((0, 1, 1), (0, 2, 2), (1, 0, 0),
(1, 2, 2), (2, 0, 0), (2, 1, 1), (0, 1, 2))])
p = sorted(pattern(3, 3))
self.assertEqual(b, p)
@ -44,9 +45,6 @@ class Test(unittest.TestCase):
p = sorted(pattern(4, 3))
self.assertEqual(b, p)
if __name__ == '__main__':
suite = unittest.TestLoader().loadTestsFromTestCase(Test)
unittest.TextTestRunner(verbosity=3).run(suite)

View File

@ -7,14 +7,16 @@ from interp.baker import run_baker
from interp.grid import grid
from interp.grid import contains
def exact_func(X):
x = X[0]
y = X[0]
return 1 - x * x + y * y
class Test(unittest.TestCase):
def setUp(self):
self.points = [
self.g = [
[0.25, 0.40], # 0
[0.60, 0.80], # 1
[0.65, 0.28], # 2
@ -24,52 +26,56 @@ class Test(unittest.TestCase):
[0.80, 0.50], # 6
[0.35, 0.15], # 7
]
self.q = [exact_func(p) for p in self.points]
self.q = [exact_func(p) for p in self.g]
self.X = [0.25, 0.4001]
self.X = [0.55, 0.45]
self.g = grid(self.points, self.q)
self.R = self.g.create_mesh(range(3))
self.R = self.g[0:3]
self.R_q = self.q[0:3]
self.exact = exact_func(self.X)
self.accuracy = 8
def test_R_contains_X(self):
self.assertTrue(contains(self.X, self.R.verts))
self.assertTrue(contains(self.X, self.R))
def test_RunBaker_1_extra_point(self, extra=1):
S = self.g.create_mesh(range(3, 3 + extra))
answer = run_baker(self.X, self.R, S)
S = self.g[3: 3 + extra]
S_q = self.q[3: 3 + extra]
answer = run_baker(self.X, self.R, self.R_q, S, S_q)
lin_err = abs(self.exact - answer['qlin'])
final_err = abs(self.exact - answer['final'])
# I expect this one to be bad:
# self.assertTrue(lin_err >= final_err)
#XXX: not sure about this one:
self.assertEqual(lin_err, final_err)
def test_RunBaker_2_extra_point(self, extra=2):
S = self.g.create_mesh(range(3, 3 + extra))
answer = run_baker(self.X, self.R, S)
S = self.g[3: 3 + extra]
S_q = self.q[3: 3 + extra]
answer = run_baker(self.X, self.R, self.R_q, S, S_q)
lin_err = abs(self.exact - answer['qlin'])
final_err = abs(self.exact - answer['final'])
self.assertTrue(lin_err >= final_err)
def test_RunBaker_3_extra_point(self, extra=3):
S = self.g.create_mesh(range(3, 3 + extra))
answer = run_baker(self.X, self.R, S)
S = self.g[3: 3 + extra]
S_q = self.q[3: 3 + extra]
answer = run_baker(self.X, self.R, self.R_q, S, S_q)
lin_err = abs(self.exact - answer['qlin'])
final_err = abs(self.exact - answer['final'])
self.assertTrue(lin_err >= final_err)
def test_RunBaker_4_extra_point(self, extra=4):
S = self.g.create_mesh(range(3, 3 + extra))
answer = run_baker(self.X, self.R, S)
S = self.g[3: 3 + extra]
S_q = self.q[3: 3 + extra]
answer = run_baker(self.X, self.R, self.R_q, S, S_q)
lin_err = abs(self.exact - answer['qlin'])
final_err = abs(self.exact - answer['final'])
self.assertTrue(lin_err >= final_err)
def test_RunBaker_5_extra_point(self, extra=5):
S = self.g.create_mesh(range(3, 3 + extra))
answer = run_baker(self.X, self.R, S)
S = self.g[3: 3 + extra]
S_q = self.q[3: 3 + extra]
answer = run_baker(self.X, self.R, self.R_q, S, S_q)
lin_err = abs(self.exact - answer['qlin'])
final_err = abs(self.exact - answer['final'])
self.assertTrue(lin_err >= final_err)