created a test for tesing the cubic interpolation

This commit is contained in:
Stephen Mardson McQuay 2010-03-20 20:09:46 -06:00
parent 1fc988428d
commit 700ccc8c25
7 changed files with 97 additions and 56 deletions

View File

@ -2,6 +2,7 @@
import sys import sys
import pickle import pickle
import pdb
from grid.DD import rect_grid, random_grid from grid.DD import rect_grid, random_grid
from baker import run_baker from baker import run_baker

View File

@ -102,7 +102,7 @@ def qlinear_3D(X, R):
qlin = sum([q_i * phi_i for q_i, phi_i in zip(R.q, phis)]) qlin = sum([q_i * phi_i for q_i, phi_i in zip(R.q, phis)])
return phis, qlin return phis, qlin
def run_baker(X, R, S): def run_baker(X, R, S, order=2):
""" """
This is the main function to call to get an interpolation to X from the input meshes This is the main function to call to get an interpolation to X from the input meshes

View File

@ -88,9 +88,9 @@ class grid(object):
(dist, indicies) = self.tree.query(X, 2) (dist, indicies) = self.tree.query(X, 2)
simplex = None simplex = None
for i in self.facets_for_point[indicies[0]]: for facet in self.facets_for_point[indicies[0]]:
if i.contains(X, self): if facet.contains(X, self):
simplex = i simplex = facet
break break
if not simplex: if not simplex:

View File

@ -1,8 +1,12 @@
from baker import get_phis from baker import get_phis
TOL = 1e-3 TOL = 1e-8
def contains(X, R): def contains(X, R):
"""
tests if X (point) is in R (a simplex,
represented by a list of n-degree coordinates)
"""
phis = get_phis(X, R) phis = get_phis(X, R)
r = True r = True
if [i for i in phis if i < 0.0 - TOL]: if [i for i in phis if i < 0.0 - TOL]:
@ -28,8 +32,18 @@ class face(object):
""" """
self.neighbors.append(n) self.neighbors.append(n)
def contains(self, X, grid): def contains(self, X, G):
return contains(X, grid.points) """
X = point of interest
G = corrensponding grid object (G.points)
because of the way i'm storing things,
a face simply stores indicies, and so one
must pass in a reference to the grid object
containing real points.
this simply calls grid.simplex.contains
"""
return contains(X, [G.points[i] for i in self.verts])
def __str__(self): def __str__(self):
neighbors = [i.name for i in self.neighbors] neighbors = [i.name for i in self.neighbors]

View File

@ -37,12 +37,12 @@ class TestSequenceFunctions(unittest.TestCase):
r = [[-1, -1], [0, 2], [1, -1]] r = [[-1, -1], [0, 2], [1, -1]]
result = baker.get_phis(X, r) result = baker.get_phis(X, r)
result = [round(i, self.accuracy) for i in result] #result = [round(i, self.accuracy) for i in result]
right_answer = [round(i, self.accuracy) for i in [1/3.0, 1/3.0, 1/3.0]] right_answer = [1/3.0, 1/3.0, 1/3.0]
for a,b in zip(result, right_answer): for a,b in zip(result, right_answer):
self.assertEqual(a,b) self.assertAlmostEqual(a,b)
def testGetPhis2(self): def testGetPhis2(self):
@ -78,13 +78,13 @@ class TestSequenceFunctions(unittest.TestCase):
self.q[size_of_simplex:size_of_simplex + extra_points]) self.q[size_of_simplex:size_of_simplex + extra_points])
answer = baker.run_baker(self.X, R, S) answer = baker.run_baker(self.X, R, S)
a = round(answer['a'], self.accuracy) a = answer['a']
b = round(answer['b'], self.accuracy) b = answer['b']
c = round(answer['c'], self.accuracy) c = answer['c']
self.assertEqual(a, c) self.assertAlmostEqual(a, c)
self.assertEqual(c, round(0.00 , self.accuracy)) self.assertAlmostEqual(c, 0.0)
self.assertEqual(b, round(1/3.0, self.accuracy)) self.assertAlmostEqual(b, 1/3.0)
def testRunBaker_2(self): def testRunBaker_2(self):
size_of_simplex = 3 size_of_simplex = 3
@ -98,12 +98,12 @@ class TestSequenceFunctions(unittest.TestCase):
answer = baker.run_baker(self.X, R, S) answer = baker.run_baker(self.X, R, S)
a = round(answer['a'], 5) a = answer['a']
b = round(answer['b'], 5) b = answer['b']
c = round(answer['c'], 5) c = answer['c']
self.assertEqual(a, c) self.assertAlmostEqual(a, c)
self.assertEqual(c, round(float(2/3.0), 5)) self.assertAlmostEqual(c, 2/3.0)
def testRunBaker_3(self): def testRunBaker_3(self):
size_of_simplex = 3 size_of_simplex = 3
@ -116,13 +116,13 @@ class TestSequenceFunctions(unittest.TestCase):
self.q[size_of_simplex:size_of_simplex + extra_points]) self.q[size_of_simplex:size_of_simplex + extra_points])
answer = baker.run_baker(self.X, R, S) answer = baker.run_baker(self.X, R, S)
a = round(answer['a'], 5) a = answer['a']
b = round(answer['b'], 5) b = answer['b']
c = round(answer['c'], 5) c = answer['c']
self.assertEqual(a, round(float(13/14.0), 5)) self.assertAlmostEqual(a, 13/14.0)
self.assertEqual(b, round(float(2 / 7.0), 5)) self.assertAlmostEqual(b, 2 / 7.0)
self.assertEqual(c, round(float(15/14.0), 5)) self.assertAlmostEqual(c, 15/14.0)
def testRunBaker_4(self): def testRunBaker_4(self):
size_of_simplex = 3 size_of_simplex = 3
@ -135,13 +135,13 @@ class TestSequenceFunctions(unittest.TestCase):
self.q[size_of_simplex:size_of_simplex + extra_points]) self.q[size_of_simplex:size_of_simplex + extra_points])
answer = baker.run_baker(self.X, R, S) answer = baker.run_baker(self.X, R, S)
a = round(answer['a'], 5) a = answer['a']
b = round(answer['b'], 5) b = answer['b']
c = round(answer['c'], 5) c = answer['c']
self.assertEqual(a, round(float(48/53.0), 5)) self.assertAlmostEqual(a, 48/53.0)
self.assertEqual(b, round(float(15/53.0), 5)) self.assertAlmostEqual(b, 15/53.0)
self.assertEqual(c, round(float(54/53.0), 5)) self.assertAlmostEqual(c, 54/53.0)
if __name__ == '__main__': if __name__ == '__main__':
suite = unittest.TestLoader().loadTestsFromTestCase(TestSequenceFunctions) suite = unittest.TestLoader().loadTestsFromTestCase(TestSequenceFunctions)

View File

@ -20,17 +20,18 @@ class TestSequenceFunctions(unittest.TestCase):
def testGetPhis3D(self): def testGetPhis3D(self):
result = [round(i, 5) for i in baker.get_phis_3D(self.X, self.r)] result = baker.get_phis_3D(self.X, self.r)
right_answer = [round(i, 5) for i in [0.25, 0.25, 0.25, 0.25]] right_answer = [0.25, 0.25, 0.25, 0.25]
self.assertEqual(result, right_answer) for a,b in zip(result, right_answer):
self.assertAlmostEqual(a,b)
def testQlinear3D(self): def testQlinear3D(self):
phi, result = baker.qlinear_3D(self.X, grid.grid(self.r, self.q)) phi, result = baker.qlinear_3D(self.X, grid.grid(self.r, self.q))
result = round(result, 5) result = result
right_answer = round(1.0, 5) right_answer = 1.0
self.assertEqual(result, right_answer) self.assertAlmostEqual(result, right_answer)
if __name__ == '__main__': if __name__ == '__main__':

View File

@ -2,12 +2,17 @@
import unittest import unittest
import math
from baker import run_baker from baker import run_baker
from baker.tools import exact_func
from grid.DD import grid from grid.DD import grid
from grid.simplex import contains from grid.simplex import contains
def exact_func(X):
x = X[0]
y = X[0]
return 1 - math.sin((x-0.5)**2 + (y-0.5)**2)
class TestSequenceFunctions(unittest.TestCase): class TestSequenceFunctions(unittest.TestCase):
def setUp(self): def setUp(self):
@ -23,31 +28,51 @@ class TestSequenceFunctions(unittest.TestCase):
] ]
self.q = [exact_func(p) for p in self.points] self.q = [exact_func(p) for p in self.points]
self.X = [0.55, 0.45]
self.X = [0.25, 0.4001] self.X = [0.25, 0.4001]
self.X = [0.55, 0.45]
self.g = grid(self.points, self.q) self.g = grid(self.points, self.q)
self.g.construct_connectivity() self.g.construct_connectivity()
self.R = self.g.create_mesh(range(3)) self.R = self.g.create_mesh(range(3))
self.S = self.g.create_mesh(range(3,len(self.points)))
self.exact = exact_func(self.X) self.exact = exact_func(self.X)
self.answer = run_baker(self.X, self.R, self.S)
self.accuracy = 8 self.accuracy = 8
def test_R_contains_X(self): def test_R_contains_X(self):
self.assertTrue(contains(self.X, self.R.points)) self.assertTrue(contains(self.X, self.R.points))
def test_RunBaker(self): def test_RunBaker_1_extra_point(self, extra=1):
print S = self.g.create_mesh(range(3, 3 + extra))
print "X\n", self.X answer = run_baker(self.X, self.R, S)
print "R\n", self.R lin_err = abs(self.exact - answer['qlin'])
print "S\n", self.S final_err = abs(self.exact - answer['final'])
print "exact\n",self.exact self.assertTrue(lin_err >= final_err)
print "qlin\n",self.answer['qlin'] def test_RunBaker_2_extra_point(self, extra=2):
self.assertTrue(self.answer) S = self.g.create_mesh(range(3, 3 + extra))
answer = run_baker(self.X, self.R, S)
lin_err = abs(self.exact - answer['qlin'])
final_err = abs(self.exact - answer['final'])
self.assertTrue(lin_err >= final_err)
def test_RunBaker_3_extra_point(self, extra=3):
S = self.g.create_mesh(range(3, 3 + extra))
answer = run_baker(self.X, self.R, S)
lin_err = abs(self.exact - answer['qlin'])
final_err = abs(self.exact - answer['final'])
self.assertTrue(lin_err >= final_err)
def test_RunBaker_4_extra_point(self, extra=4):
S = self.g.create_mesh(range(3, 3 + extra))
answer = run_baker(self.X, self.R, S)
lin_err = abs(self.exact - answer['qlin'])
final_err = abs(self.exact - answer['final'])
self.assertTrue(lin_err >= final_err)
def test_RunBaker_5_extra_point(self, extra=5):
S = self.g.create_mesh(range(3, 3 + extra))
answer = run_baker(self.X, self.R, S)
lin_err = abs(self.exact - answer['qlin'])
final_err = abs(self.exact - answer['final'])
self.assertTrue(lin_err >= final_err)
if __name__ == '__main__': if __name__ == '__main__':
suite = unittest.TestLoader().loadTestsFromTestCase(TestSequenceFunctions) suite = unittest.TestLoader().loadTestsFromTestCase(TestSequenceFunctions)