implemented a function that will be used to provide a generic n-th order, nth-dimension error approximation function

This commit is contained in:
Stephen McQuay 2010-05-04 23:03:07 -06:00
parent c5adab295b
commit 3a1c13bcac
5 changed files with 118 additions and 1 deletions

View File

@ -1,3 +1,4 @@
\.pyc$
\.gz$
\.blend$
egg

12
bin/pattern.py Executable file
View File

@ -0,0 +1,12 @@
#!/usr/bin/env python
from baker import pattern
from baker.tools import smblog
smblog.info(pattern(power = 2, phicount = 3, offset = -1))
smblog.info()
smblog.info(pattern(power = 2, phicount = 4, offset = -1))
smblog.info()
smblog.info(pattern(power = 3, phicount = 3, offset = -1))
smblog.info()
smblog.info(pattern(power = 3, phicount = 4, offset = -1))

69
bin/test3d-connectivity.py Executable file
View File

@ -0,0 +1,69 @@
#!/usr/bin/env python
import sys
from grid.DDD import random_grid
from baker import get_phis, run_baker
from baker.tools import exact_func, smberror, improved_answer, smblog
from glob import glob
from os import remove
import numpy as np
import pylab
def draw_gb(bad, good):
pylab.xlabel('total runs')
pylab.ylabel('count')
pylab.grid(True)
pylab.plot(bad)
pylab.plot(good)
pylab.legend(('bad', 'good'))
pylab.show()
FILE_PREFIX='/tmp/qhull-'
if __name__ == '__main__':
for g in glob('%s*' % FILE_PREFIX):
remove(g)
try:
total_points = int(sys.argv[1])
random_points = int(sys.argv[2])
total_tries = int(sys.argv[3])
except:
print "usage: app.py [total points in random grid] [number of random points to attempt] [total attempts]"
sys.exit(1)
print "total points", total_points
d = {True: 0, False: 0}
good = []
bad = []
for cur_try in xrange(total_tries):
g = random_grid(total_points)
open('%s%0.3d.txt' % (FILE_PREFIX, cur_try), 'w').write(g.for_qhull())
for i in xrange(random_points):
X = [np.random.rand(), np.random.rand(), np.random.rand()]
exact = exact_func(X)
try:
try:
answer = g.run_baker(X)
d[improved_answer(answer, exact)] += 1
except ValueError as e:
smblog.error(e)
except smberror as e:
print e
print d
print d
bad.append(d[False])
good.append(d[True])
draw_gb(bad = bad, good = good)

View File

@ -3,6 +3,7 @@ from baker.tools import smblog
import numpy as np
import sys
import itertools
from tools import smberror
def get_phis(X, R):
@ -305,3 +306,30 @@ def run_baker_3D(X, R, S):
}
return answer
def _boxings(n, k):
"""\
source for this function:
http://old.nabble.com/Simple-combinatorics-with-Numpy-td20086915.html
http://old.nabble.com/Re:-Simple-combinatorics-with-Numpy-p20099736.html
"""
seq, i = [n] * k + [0], k
while i:
yield tuple(seq[i] - seq[i+1] for i in xrange(k))
i = seq.index(0) - 1
seq[i:k] = [seq[i] - 1] * (k-i)
def _samples_ur(items, k, offset = 0):
"""Returns k unordered samples (with replacement) from items."""
n = len(items)
for sample in _boxings(k, n):
selections = [[items[i]]*count for i,count in enumerate(sample)]
yield tuple([x + offset for sel in selections for x in sel])
def pattern(power, phicount, offset = 0):
smblog.debug("(power = %s, phicount = %s)" % (power, phicount))
r = []
for i in _samples_ur(range(1, phicount + 1), power, offset):
if not len(set(i)) == 1:
r.append(i)
return r

View File

@ -1,5 +1,5 @@
from grid import grid as basegrid
from baker.tools import exact_func_3D
from baker.tools import exact_func_3D, smblog
import numpy as np
@ -88,6 +88,13 @@ class random_grid(rect_grid):
r = np.random
appx_side_res = int(np.power(num_points, 1/3.0))
smblog.debug("appx_side_res: %d" % appx_side_res)
delta = 1.0 / float(appx_side_res)
for x in xrange(appx_side_res + 1):
pass
for i in xrange(num_points):
cur_x = r.rand()
cur_y = r.rand()