package vector import ( "math" ) // A and B represent two opposite corners of axis-aligned boundin box type AABB2d struct { A Point2d `json:"A"` B Point2d `json:"B"` } type Polygon2d struct { Points []Vector2d `json:"points"` Normals []Vector2d `json:"normals"` Origin Point2d `json:"origin"` } func (p Polygon2d) Edge(i int) (Point2d, Vector2d) { p1 := Point2d{} p2 := Point2d{} if i == len(p.Points)-1 { p1 = p.Origin.Add(p.Points[i]) p2 = p.Origin.Add(p.Points[0]) } else { p1 = p.Origin.Add(p.Points[i]) p2 = p.Origin.Add(p.Points[i+1]) } return p1, p2.Sub(p1) } type Vector2d struct { X float64 `json:"x"` Y float64 `json:"y"` } type Point2d struct { X float64 `json:"x"` Y float64 `json:"y"` } const Epsilon = 1e-7 const Rad2deg = 180 / math.Pi const Deg2rad = math.Pi / 180 func (p1 Point2d) Sub(p2 Point2d) Vector2d { return Vector2d{p1.X - p2.X, p1.Y - p2.Y} } func (p Point2d) Add(v Vector2d) Point2d { return Point2d{p.X + v.X, p.Y + v.Y} } func (v Vector2d) Mag() float64 { return math.Abs(math.Sqrt(v.X*v.X + v.Y*v.Y)) } func (v Vector2d) MagSquared() float64 { return math.Abs(v.X*v.X + v.Y*v.Y) } func (v Vector2d) PopPop() float64 { return v.Mag() } func (v Vector2d) Scale(s float64) Vector2d { return Vector2d{v.X * s, v.Y * s} } func (v1 Vector2d) Cross(v2 Vector2d) float64 { return v1.X*v2.Y - v1.Y*v2.X } func (v1 Vector2d) Dot(v2 Vector2d) float64 { return (v1.X * v2.X) + (v1.Y * v2.Y) } func (p Point2d) ToVector() Vector2d { return Vector2d{p.X, p.Y} } func (v Vector2d) ToPoint() Point2d { return Point2d{v.X, v.Y} } func (v1 Vector2d) Rotate(a float64) Vector2d { x := float64(v1.X)*math.Cos(float64(a)) - float64(v1.Y)*math.Sin(float64(a)) y := float64(v1.X)*math.Sin(float64(a)) + float64(v1.Y)*math.Cos(float64(a)) return Vector2d{x, y} } func PointInRect(p Point2d, r AABB2d) bool { return (p.X > r.A.X) && (p.X < r.B.X) && (p.Y > r.A.Y) && (p.Y < r.B.Y) } func AASquareAtPoint(p Point2d, edgeLength float64) AABB2d { size := edgeLength / 2.0 return AABB2d{ A: Point2d{X: p.X - size, Y: p.Y - size}, B: Point2d{X: p.X + size, Y: p.Y + size}} } func (r AABB2d) ToPolygon() Polygon2d { p := Polygon2d{} p.Origin = r.A p.Points = append(p.Points, r.A.Sub(p.Origin)) p.Points = append(p.Points, Point2d{r.A.X, r.B.Y}.Sub(p.Origin)) p.Points = append(p.Points, r.B.Sub(p.Origin)) p.Points = append(p.Points, Point2d{r.B.X, r.A.Y}.Sub(p.Origin)) return p } func OrientedSquare(center Point2d, heading Vector2d, size float64) Polygon2d { out := Polygon2d{} out.Origin.X = center.X out.Origin.Y = center.Y x := heading.Normalize().Scale(size) y := Vector2d{-x.Y, x.X} z := Point2d{} out.Points = append(out.Points, z.Add(x).Add(y).ToVector()) out.Points = append(out.Points, z.Add(y).Sub(x.ToPoint())) out.Points = append(out.Points, z.Sub(x.ToPoint()).ToPoint().Sub(y.ToPoint())) out.Points = append(out.Points, z.Add(x).Sub(y.ToPoint())) return out } func (v Vector2d) Normalize() Vector2d { if v.X == 0 && v.Y == 0 { return v } m := v.Mag() return Vector2d{v.X / m, v.Y / m} } func Distance(p1, p2 Point2d) float64 { return p1.Sub(p2).Mag() } // returns radians func Angle(v1, v2 Vector2d) float64 { x := (v1.Dot(v2) / (v1.Mag() * v2.Mag())) angle := math.Acos(float64(x)) if math.IsNaN(angle) { if math.Abs(float64(v1.X-v2.X)) > Epsilon { return 180.0 } else { return 0 } } // Determine the sign to see what direction // the angle should go in if v1.Y*v2.X > v1.X*v2.Y { angle = angle * -1.0 } return angle }