server/game.go

367 lines
8.9 KiB
Go

package botserv
// delete me
import (
"log"
"sort"
"sync"
"time"
"bitbucket.org/smcquay/bandwidth"
)
const maxPlayer = 128
// BotHealth is sent to all players so they know how other robots are
// doing.
type BotHealth struct {
RobotId string `json:"robot_id"`
Health int `json:"health"`
}
// Scanner contains a Robot/Projectile hash and is sent to the user to
// let them know which things they know about.
type Scanner struct {
Id string `json:"id"`
Type string `json:"type"`
}
// BotStats is stats for a single Player's Robot.
type BotStats struct {
Kills int
Deaths int
Suicides int
Shots int
DirectHits int
Hits int
Wins int
}
// PlayerStats is what you want many of. Contains a map of BotStats and total
// wins.
type PlayerStats struct {
BotStats map[string]*BotStats
Wins int
}
// GameStats is a collection of PlayerStats for all players involved.
type GameStats struct {
PlayerStats map[string]*PlayerStats
sync.RWMutex
}
// Game is the main point of interest in this application. Embodies all info
// required to keep track of players, robots, stats, projectils, etc.
// Currently Controllers have a map of these.
type Game struct {
id string
players map[*Player]bool
projectiles map[*Projectile]bool
splosions map[*Splosion]bool
obstacles []Obstacle
obstacle_count int
register chan *Player
unregister chan *Player
turn int
players_remaining int
width, height float32
maxPoints int
spectators map[*Spectator]bool
sregister chan *Spectator
sunregister chan *Spectator
kill chan bool
repair_hp int
repair_rate float32
tick_duration int
stats GameStats
mode GameMode
bw *bandwidth.Bandwidth
}
// This is the interface that different gametypes should implement.
type GameMode interface {
setup(g *Game)
tick(gg *Game, payload *Boardstate)
gameOver(gg *Game) (bool, *GameOver)
}
// NewGame Poplulates a Game struct and starts the bandwidth calculator.
func NewGame(id string, width, height float32, obstacles, tick, maxPoints int, mode string) (*Game, error) {
bw, err := bandwidth.NewBandwidth(
[]int{1, 10, 60},
1*time.Second,
)
if err != nil {
return nil, err
}
go bw.Run()
g := &Game{
id: id,
register: make(chan *Player, maxPlayer),
unregister: make(chan *Player, maxPlayer),
projectiles: make(map[*Projectile]bool),
splosions: make(map[*Splosion]bool),
obstacles: GenerateObstacles(obstacles, width, height),
obstacle_count: obstacles,
players: make(map[*Player]bool),
turn: 0,
width: width,
height: height,
maxPoints: maxPoints,
spectators: make(map[*Spectator]bool),
sregister: make(chan *Spectator),
sunregister: make(chan *Spectator),
kill: make(chan bool),
repair_hp: 5,
repair_rate: 3.0,
tick_duration: tick,
players_remaining: 2,
stats: GameStats{PlayerStats: make(map[string]*PlayerStats)},
bw: bw,
}
if mode == "melee" {
g.mode = &melee{respawn: make(map[*Robot]float64)}
} else {
g.mode = &deathmatch{}
}
g.mode.setup(g)
return g, nil
}
// tick is the method called every TICK ms.
func (g *Game) tick(payload *Boardstate) {
g.players_remaining = 0
payload.Objects = MinifyObstacles(g.obstacles)
// Update Players
for p := range g.players {
living_robots := 0
for _, r := range p.Robots {
if r.Health > 0 {
living_robots++
r.Tick(g)
}
if len(r.Message) > 0 {
if len(r.Message) > 100 {
r.Message = r.Message[0:99]
}
payload.Messages = append(payload.Messages, r.Message)
}
payload.OtherRobots = append(
payload.OtherRobots,
r.GetTruncatedDetails())
payload.AllBots = append(
payload.AllBots,
BotHealth{RobotId: r.Id, Health: r.Health})
}
if living_robots > 0 {
g.players_remaining++
}
}
// Update Projectiles
for pr := range g.projectiles {
pr.Tick(g)
}
// We do this here, because the tick calls can alter g.projectiles
for pr := range g.projectiles {
payload.Projectiles = append(payload.Projectiles, *pr)
}
// Update Splosions
for s := range g.splosions {
s.Tick()
if !s.Alive() {
delete(g.splosions, s)
}
payload.Splosions = append(payload.Splosions, *s)
}
}
// sendUpdate is what we use to determine what data goes out to each client;
// performs filtering and sorting of the data.
func (g *Game) sendUpdate(payload *Boardstate) {
// Ensure that the robots are always sent in a consistent order
sort.Sort(RobotSorter{Robots: payload.OtherRobots})
sort.Sort(AllRobotSorter{Robots: payload.AllBots})
for p := range g.players {
// Copy the payload but only add the robots in scanner range
player_payload := NewBoardstate()
player_payload.Messages = payload.Messages
player_payload.AllBots = payload.AllBots
player_payload.Turn = payload.Turn
for _, r := range p.Robots {
player_payload.MyRobots = append(player_payload.MyRobots, *r)
// player_payload.OtherRobots = append(
// player_payload.OtherRobots,
// r.GetTruncatedDetails())
}
player_payload.Objects = [][4]int{}
player_payload.Splosions = []Splosion{}
player_payload.Projectiles = []Projectile{}
living_robots := 0
for _, r := range p.Robots {
if r.Health > 0 {
living_robots++
// Filter robots by scanner
for player := range g.players {
for _, scan_entry := range r.Scanners {
for _, r := range player.Robots {
if r.Id == scan_entry.Id {
player_payload.OtherRobots = append(
player_payload.OtherRobots,
r.GetTruncatedDetails())
}
}
}
}
// Filter projectiles
for proj := range g.projectiles {
if proj.Owner == r {
player_payload.Projectiles = append(
player_payload.Projectiles,
*proj)
}
for _, scan_entry := range r.Scanners {
if proj.Id == scan_entry.Id {
player_payload.Projectiles = append(
player_payload.Projectiles,
*proj)
}
}
}
// Filter splosions
for splo := range g.splosions {
for _, scan_entry := range r.Scanners {
if splo.Id == scan_entry.Id {
player_payload.Splosions = append(
player_payload.Splosions,
*splo)
}
}
}
// Filter objects
for _, ob := range g.obstacles {
if ob.distance_from_point(r.Position) < float32(r.Stats.ScannerRadius)+r.ScanCounter {
player_payload.Objects = append(
player_payload.Objects, ob.minify())
}
}
}
}
// if living_robots == 0 {
// player_payload.OtherRobots = payload.OtherRobots
// player_payload.Projectiles = payload.Projectiles
// player_payload.Splosions = payload.Splosions
// player_payload.Objects = payload.Objects
// }
p.send <- player_payload
}
for s := range g.spectators {
s.send <- payload
}
}
// run is the method that contians the main game loop.
func (g *Game) run() {
ticker := time.NewTicker(time.Duration(g.tick_duration) * time.Millisecond)
for {
select {
case <-g.kill:
log.Printf("game %s: received kill signal, dying gracefully", g.id)
g.bw.Quit <- true
for player := range g.players {
close(player.send)
}
return
case p := <-g.register:
log.Println("registering player:", p.Id)
g.players[p] = true
g.stats.PlayerStats[p.Id] = &PlayerStats{
BotStats: make(map[string]*BotStats),
}
for _, r := range p.Robots {
g.stats.PlayerStats[p.Id].BotStats[r.Name] = &BotStats{}
r.gameStats = g.stats.PlayerStats[p.Id].BotStats[r.Name]
}
case p := <-g.unregister:
log.Println("unregistering player:", p.Id)
delete(g.players, p)
close(p.send)
case s := <-g.sregister:
log.Println("registering spectator:", s.Id)
g.spectators[s] = true
case s := <-g.sunregister:
log.Println("unregistering spectator:", s.Id)
delete(g.spectators, s)
close(s.send)
case <-ticker.C:
payload := NewBoardstate()
g.turn++
payload.Turn = g.turn
// UPDATE GAME STATE
if end, data := g.mode.gameOver(g); end {
g.sendGameOver(data)
}
g.tick(payload)
g.mode.tick(g, payload)
// SEND THE UPDATE TO EACH PLAYER
g.sendUpdate(payload)
}
}
log.Println("run done")
}
// sendGameOver is a special method that sends a GameOver object to the clients
// instead of a normal Boardstate message.
func (g *Game) sendGameOver(eg *GameOver) {
log.Printf("sending out game over message: %+v", eg)
for p := range g.players {
p.send <- eg
}
for s := range g.spectators {
s.send <- eg
}
}
// returns a GameParam object popuplated by info from the game. This is
// used during client/server initial negociation.
func (g *Game) gameParam() *GameParam {
return &GameParam{
BoardSize: BoardSize{
Width: g.width,
Height: g.height,
},
MaxPoints: g.maxPoints,
Type: "gameparam",
}
}