package server import ( "log" "math" "math/rand" v "hackerbots.us/vector" "mcquay.me/idg" ) // Robot contains everything the game needs to know to simulate robot behavior. // Players have a []Robot type Robot struct { Id string `json:"id"` Name string `json:"name"` Message string `json:"-"` Stats Stats `json:"-"` TargetSpeed float64 `json:"target_speed"` Speed float64 `json:"speed"` Health int `json:"health"` RepairCounter float64 `json:"repair"` ScanCounter float64 `json:"scan_bonus"` ActiveScan bool `json:"-"` Position v.Point2d `json:"position"` Heading v.Vector2d `json:"heading"` DesiredHeading *v.Vector2d `json:"-"` MoveTo *v.Point2d `json:"-"` FireAt *v.Point2d `json:"-"` Scanners []Scanner `json:"scanners"` LastFired int `json:"-"` Collision *Collision `json:"collision"` Hit bool `json:"hit"` Probe *v.Point2d `json:"probe"` ProbeResult *Collision `json:"probe_result"` gameStats *BotStats Delta float64 `json:"-"` idg *idg.Generator } // Collision is basically a Point2d. type Collision struct { v.Point2d Type string `json:"type"` } // This is the subset of data we send to players about robots // that are not theirs. type OtherRobot struct { Id string `json:"id"` Name string `json:"name"` Position v.Point2d `json:"position"` Heading v.Vector2d `json:"heading"` Health int `json:"health"` } // GetTruncatedDetails pares down our info into an OtherRobot. func (r Robot) GetTruncatedDetails() OtherRobot { return OtherRobot{ Id: r.Id, Name: r.Name, Position: r.Position, Heading: r.Heading, Health: r.Health, } } // RobotSorter implements sort.Interface for OtherRobot type RobotSorter struct { Robots []OtherRobot } func (s RobotSorter) Len() int { return len(s.Robots) } func (s RobotSorter) Swap(i, j int) { s.Robots[i], s.Robots[j] = s.Robots[j], s.Robots[i] } func (s RobotSorter) Less(i, j int) bool { return s.Robots[i].Id < s.Robots[j].Id } // AllRobotSorter implements sort.Inteface for BotHealth type AllRobotSorter struct { Robots []BotHealth } func (s AllRobotSorter) Len() int { return len(s.Robots) } func (s AllRobotSorter) Swap(i, j int) { s.Robots[i], s.Robots[j] = s.Robots[j], s.Robots[i] } func (s AllRobotSorter) Less(i, j int) bool { return s.Robots[i].RobotId < s.Robots[j].RobotId } // Stats is the point allocation for a Robot. type Stats struct { Id string Hp int `json:"hp"` Speed float64 `json:"speed"` Acceleration float64 `json:"acceleration"` WeaponRadius int `json:"weapon_radius"` ScannerRadius int `json:"scanner_radius"` TurnSpeed int `json:"turn_speed"` FireRate int `json:"fire_rate"` WeaponDamage int `json:"weapon_damage"` WeaponSpeed float64 `json:"weapon_speed"` } // StatsRequest is the struct used in comunication with the player. We request // stats using an integer between 1 and 100, the integer values map to sensible // min-max ranges type StatsRequest struct { Hp int `json:"hp"` Speed int `json:"speed"` Acceleration int `json:"acceleration"` WeaponRadius int `json:"weapon_radius"` ScannerRadius int `json:"scanner_radius"` TurnSpeed int `json:"turn_speed"` FireRate int `json:"fire_rate"` WeaponDamage int `json:"weapon_damage"` WeaponSpeed int `json:"weapon_speed"` } // DeriveStats maps the 0-100 values to sensible in-game min-max values. func DeriveStats(request StatsRequest) Stats { s := Stats{} // Conversion Tables hp_min := 20.0 hp_max := 200.0 s.Hp = int((float64(request.Hp) / 100.0 * (hp_max - hp_min)) + hp_min) speed_min := 40.0 speed_max := 250.0 s.Speed = float64(request.Speed)/100.0*(speed_max-speed_min) + speed_min accel_min := 20.0 accel_max := 100.0 s.Acceleration = ((float64(request.Acceleration) / 100.0) * (accel_max - accel_min)) + accel_min wep_rad_min := 5.0 wep_rad_max := 60.0 s.WeaponRadius = int(((float64(request.WeaponRadius) / 100.0) * (wep_rad_max - wep_rad_min)) + wep_rad_min) scan_rad_min := 100.0 scan_rad_max := 400.0 s.ScannerRadius = int(((float64(request.ScannerRadius) / 100.0) * (scan_rad_max - scan_rad_min)) + scan_rad_min) turn_spd_min := 30.0 turn_spd_max := 300.0 s.TurnSpeed = int(((float64(request.TurnSpeed) / 100.0) * (turn_spd_max - turn_spd_min)) + turn_spd_min) fire_rate_min := 10.0 fire_rate_max := 2000.0 s.FireRate = int(fire_rate_max+300.0) - int(((float64(request.FireRate)/100.0)*(fire_rate_max-fire_rate_min))+fire_rate_min) weapon_damage_min := 0.0 weapon_damage_max := 20.0 s.WeaponDamage = int(((float64(request.WeaponDamage) / 100.0) * (weapon_damage_max - weapon_damage_min)) + weapon_damage_min) weapon_speed_min := 80.0 weapon_speed_max := 600.0 s.WeaponSpeed = float64(((float64(request.WeaponSpeed) / 100.0) * (weapon_speed_max - weapon_speed_min)) + weapon_speed_min) return s } // Instruction is the struct a player sends each turn. type Instruction struct { Message *string `json:"message,omitempty"` MoveTo *v.Point2d `json:"move_to,omitempty"` Heading *v.Vector2d `json:"heading,omitempty"` FireAt *v.Point2d `json:"fire_at,omitempty"` Probe *v.Point2d `json:"probe,omitempty"` TargetSpeed *float64 `json:"target_speed,omitempty"` Repair *bool `json:"repair,omitempty"` Scan *bool `json:"scan,omitempty"` } // returns collision, the intersection point, and the robot with whom r has // collided, if this happened. func (r *Robot) checkCollisions(g *Game, probe v.Vector2d) (bool, *v.Point2d, *Robot) { finalCollision := false closest := math.Inf(1) var intersection *v.Point2d var finalRobot *Robot // TODO: this needs moved to the conf? botSize := 5.0 botPolygon := v.OrientedSquare(r.Position, r.Heading, botSize) // Check Obstacles for _, obj := range g.obstacles { // collision due to motion: collision, move_collision, translation := v.PolyPolyIntersection( botPolygon, probe, obj.Bounds.ToPolygon()) if collision || move_collision { finalCollision = true p := r.Position.Add(probe).Add(translation) if dist := r.Position.Sub(p).Mag(); dist < closest { intersection = &p closest = dist } } // collision due to probe collision, _, wallIntersect := v.RectIntersection(obj.Bounds, r.Position, probe) if collision && wallIntersect != nil { finalCollision = collision if dist := r.Position.Sub(*wallIntersect).Mag(); dist < closest { intersection = wallIntersect closest = dist } } } // Check Other Bots for player := range g.players { for _, bot := range player.Robots { if bot.Id == r.Id { continue } player_rect := v.OrientedSquare(bot.Position, bot.Heading, botSize) collision, move_collision, translation := v.PolyPolyIntersection( botPolygon, probe, player_rect) if collision || move_collision { finalCollision = collision p := r.Position.Add(probe).Add(translation.Scale(1.2)) if dist := r.Position.Sub(p).Mag(); dist < closest { intersection = &p closest = dist finalRobot = bot } } } } return finalCollision, intersection, finalRobot } // Tick is the Robot's chance to udpate itself. func (r *Robot) Tick(g *Game) { r.Collision = nil r.Hit = false r.scan(g) // Cap Target Speed if r.TargetSpeed > r.Stats.Speed { r.TargetSpeed = r.Stats.Speed } if r.TargetSpeed < -0.25*r.Stats.Speed { r.TargetSpeed = -0.25 * r.Stats.Speed } // Are we speeding up or slowing down? increase := true if r.Speed-r.TargetSpeed > v.Epsilon { increase = false } if increase { r.Speed += (r.Stats.Acceleration * r.Delta) // Stop us from going too far if r.Speed > r.TargetSpeed { r.Speed = r.TargetSpeed } } else { r.Speed -= (r.Stats.Acceleration * 8 * r.Delta) // Dont go too far if r.Speed < r.TargetSpeed { r.Speed = r.TargetSpeed } } // Adjust Heading current_heading := r.Heading if current_heading.Mag() == 0 && r.MoveTo != nil { // We may have been stopped before this and had no heading current_heading = r.MoveTo.Sub(r.Position).Normalize() } new_heading := current_heading if r.MoveTo != nil { // Where do we WANT to be heading? new_heading = r.MoveTo.Sub(r.Position).Normalize() } if r.DesiredHeading != nil { // Where do we WANT to be heading? new_heading = r.DesiredHeading.Normalize() } if new_heading.Mag() > 0 { // Is our direction change too much? Hard coding to 5 degrees/s for now angle := v.Angle(current_heading, new_heading) * v.Rad2deg dir := 1.0 if angle < 0 { dir = -1.0 } // Max turn radius in this case is in degrees per second if math.Abs(angle) > float64(r.Stats.TurnSpeed)*r.Delta { // New heading should be a little less, take current heading and // rotate by the max turn radius per frame. rot := (float64(r.Stats.TurnSpeed) * r.Delta) * v.Deg2rad new_heading = current_heading.Rotate(rot * dir) } move_vector := new_heading.Scale(r.Speed * r.Delta) collision, intersection_point, hit_robot := r.checkCollisions(g, move_vector) if collision { dmg := int(math.Abs(float64(r.Speed)) / 10.0) if dmg <= 0 { // All collisions need to do at least a little damage, // otherwise robots could get stuck and never die dmg = 1 } r.Collision = &Collision{ Point2d: *intersection_point, Type: "obstacle", } if hit_robot != nil { r.Collision.Type = "robot" } if hit_robot != nil { hit_robot.Health -= dmg hit_robot.Speed = (hit_robot.Speed * 0.5) // hit_robot.Heading = r.Heading if hit_robot.Health <= 0 { hit_robot.gameStats.Deaths++ r.gameStats.Kills++ } } if r.Position != *intersection_point { r.Position = *intersection_point } r.Health -= dmg r.MoveTo = &r.Position r.Speed = (r.Speed * -0.5) // r.Heading = r.Heading.Scale(-1.0) if r.Health <= 0 { r.gameStats.Deaths++ r.gameStats.Suicides++ } } else { r.Position = r.Position.Add(move_vector) if new_heading.Mag() > 0 { r.Heading = new_heading } else { log.Printf("Zero Heading %v", new_heading) } } } // We only self repair when we're stopped if math.Abs(float64(r.Speed)) < v.Epsilon && r.RepairCounter > 0 { r.RepairCounter -= r.Delta if r.RepairCounter < 0 { r.Health += g.repair_hp if r.Health > r.Stats.Hp { r.Health = r.Stats.Hp } r.RepairCounter = g.repair_rate } } // We are only allowed to scan when we're stopped if math.Abs(float64(r.Speed)) < v.Epsilon && r.ActiveScan { r.ScanCounter += r.Delta * float64(r.Stats.ScannerRadius) * 0.1 } else if r.ScanCounter > 0 { r.ScanCounter -= r.Delta * float64(r.Stats.ScannerRadius) * 0.05 if r.ScanCounter <= 0 { r.ScanCounter = 0 } } if r.FireAt != nil { proj := r.fire(g) if proj != nil { g.projectiles[proj] = true } } if r.Probe != nil && r.ProbeResult == nil { probe_vector := r.Probe.Sub(r.Position) coll, pos, robo := r.checkCollisions(g, probe_vector) if coll { r.ProbeResult = &Collision{ Point2d: *pos, Type: "obstacle", } if robo != nil { r.ProbeResult.Type = "robot" } } } } // scan updates the robots field of view if it's in teh appropriate mode func (r *Robot) scan(g *Game) { r.Scanners = r.Scanners[:0] for player := range g.players { for _, bot := range player.Robots { if bot.Id == r.Id || bot.Health <= 0 { continue } dist := v.Distance(bot.Position, r.Position) if dist < float64(r.Stats.ScannerRadius+int(r.ScanCounter)) { s := Scanner{ Id: bot.Id, Type: "robot", } r.Scanners = append(r.Scanners, s) } } } for proj := range g.projectiles { if proj.Owner == r { continue } dist := v.Distance(proj.Position, r.Position) if dist < float64(r.Stats.ScannerRadius+int(r.ScanCounter)) { s := Scanner{ Id: proj.Id, Type: "projectile", } r.Scanners = append(r.Scanners, s) } } for splo := range g.splosions { dist := v.Distance(splo.Position, r.Position) if dist < float64(r.Stats.ScannerRadius+int(r.ScanCounter)) { s := Scanner{ Id: splo.Id, Type: "explosion", } r.Scanners = append(r.Scanners, s) } } } // fire is called according to player instruction. XXX: There is a race here... func (r *Robot) fire(g *Game) *Projectile { // Throttle the fire rate time_since_fired := (float64(g.turn) * (r.Delta * 1000)) - (float64(r.LastFired) * (r.Delta * 1000)) if time_since_fired < float64(r.Stats.FireRate) { return nil } r.LastFired = g.turn r.gameStats.Shots++ return &Projectile{ Id: r.idg.Hash(), Position: r.Position, MoveTo: *r.FireAt, Damage: r.Stats.WeaponDamage, Radius: r.Stats.WeaponRadius, Speed: r.Stats.WeaponSpeed, Owner: r, Delta: r.Delta, } } // reset is called to move a robot to a reasonable location at game start time. func (r *Robot) reset(g *Game) { for { start_pos := v.Point2d{ X: rand.Float64() * float64(g.width), Y: rand.Float64() * float64(g.height), } r.MoveTo = &start_pos r.Position = start_pos r.Health = r.Stats.Hp // Check Obstacles retry := false for _, obj := range g.obstacles { _, inside, _ := v.RectIntersection(obj.Bounds, r.Position, v.Vector2d{X: 0, Y: 0}) if inside { retry = true } } if !retry { break } } }