package main import ( v "bitbucket.org/hackerbots/vector" "log" "math" "math/rand" ) type Robot struct { Id string `json:"id"` Name string `json:"name"` Message string `json:"-"` Stats Stats `json:"-"` TargetSpeed float32 `json:"-"` Speed float32 `json:"speed"` Health int `json:"health"` RepairCounter float32 `json:"repair"` ScanCounter float32 `json:"scan_bonus"` ActiveScan bool `json:"-"` Position v.Point2d `json:"position"` Heading v.Vector2d `json:"heading"` DesiredHeading *v.Vector2d `json:"-"` MoveTo *v.Point2d `json:"-"` FireAt *v.Point2d `json:"-"` Scanners []Scanner `json:"scanners"` LastFired int `json:"-"` Collision bool `json:"collision"` Hit bool `json:"hit"` Probe *v.Point2d `json:"probe"` ProbeResult *v.Point2d `json:"probe_result"` } // This is the subset of data we send to players about robots // that are not theirs. type OtherRobot struct { Id string `json:"id"` Name string `json:"name"` Position v.Point2d `json:"position"` Heading v.Vector2d `json:"heading"` Health int `json:"health"` } func (r Robot) GetTruncatedDetails() OtherRobot { return OtherRobot{ Id: r.Id, Name: r.Name, Position: r.Position, Heading: r.Heading, Health: r.Health, } } type RobotSorter struct { Robots []OtherRobot } func (s RobotSorter) Len() int { return len(s.Robots) } func (s RobotSorter) Swap(i, j int) { s.Robots[i], s.Robots[j] = s.Robots[j], s.Robots[i] } func (s RobotSorter) Less(i, j int) bool { return s.Robots[i].Id < s.Robots[j].Id } // TODO - how do I not duplicate this code??? type AllRobotSorter struct { Robots []BotHealth } func (s AllRobotSorter) Len() int { return len(s.Robots) } func (s AllRobotSorter) Swap(i, j int) { s.Robots[i], s.Robots[j] = s.Robots[j], s.Robots[i] } func (s AllRobotSorter) Less(i, j int) bool { return s.Robots[i].RobotId < s.Robots[j].RobotId } type Stats struct { Hp int `json:"-"` Speed float32 `json:"-"` Acceleration float32 `json:"-"` WeaponRadius int `json:"-"` ScannerRadius int `json:"-"` TurnSpeed int `json:"-"` FireRate int `json:"-"` WeaponDamage int `json:"-"` WeaponSpeed float32 `json:"-"` } // We request stats using an integer between 1 and 100, the // integer values map to sensible min-max ranges type StatsRequest struct { Hp int `json:"hp"` Speed int `json:"speed"` Acceleration int `json:"acceleration"` WeaponRadius int `json:"weapon_radius"` ScannerRadius int `json:"scanner_radius"` TurnSpeed int `json:"turn_speed"` FireRate int `json:"fire_rate"` WeaponDamage int `json:"weapon_damage"` WeaponSpeed int `json:"weapon_speed"` } func DeriveStats(request StatsRequest) Stats { s := Stats{} // Conversion Tables var hp_min float32 = 20.0 var hp_max float32 = 200.0 s.Hp = int(((float32(request.Hp) / 100.0) * (hp_max - hp_min)) + hp_min) var speed_min float32 = 40.0 var speed_max float32 = 200.0 s.Speed = ((float32(request.Speed) / 100.0) * (speed_max - speed_min)) + speed_min var accel_min float32 = 20.0 var accel_max float32 = 200.0 s.Acceleration = ((float32(request.Acceleration) / 100.0) * (accel_max - accel_min)) + accel_min var wep_rad_min float32 = 5.0 var wep_rad_max float32 = 60.0 s.WeaponRadius = int(((float32(request.WeaponRadius) / 100.0) * (wep_rad_max - wep_rad_min)) + wep_rad_min) var scan_rad_min float32 = 100.0 var scan_rad_max float32 = 400.0 s.ScannerRadius = int(((float32(request.ScannerRadius) / 100.0) * (scan_rad_max - scan_rad_min)) + scan_rad_min) var turn_spd_min float32 = 30.0 var turn_spd_max float32 = 300.0 s.TurnSpeed = int(((float32(request.TurnSpeed) / 100.0) * (turn_spd_max - turn_spd_min)) + turn_spd_min) var fire_rate_min float32 = 10.0 var fire_rate_max float32 = 2000.0 s.FireRate = int(fire_rate_max+300.0) - int(((float32(request.FireRate)/100.0)*(fire_rate_max-fire_rate_min))+fire_rate_min) var weapon_damage_min float32 = 0.0 var weapon_damage_max float32 = 20.0 s.WeaponDamage = int(((float32(request.WeaponDamage) / 100.0) * (weapon_damage_max - weapon_damage_min)) + weapon_damage_min) var weapon_speed_min float32 = 80.0 var weapon_speed_max float32 = 600.0 s.WeaponSpeed = float32(((float32(request.WeaponSpeed) / 100.0) * (weapon_speed_max - weapon_speed_min)) + weapon_speed_min) return s } type Instruction struct { Message *string `json:"message,omitempty"` MoveTo *v.Point2d `json:"move_to,omitempty"` Heading *v.Vector2d `json:"heading,omitempty"` FireAt *v.Point2d `json:"fire_at,omitempty"` Probe *v.Point2d `json:"probe,omitempty"` TargetSpeed *float32 `json:"target_speed,omitempty"` Repair *bool `json:"repair,omitempty"` Scan *bool `json:"scan,omitempty"` } func (r *Robot) checkCollisions(g *game, move_vector v.Vector2d) (bool, v.Point2d, *Robot) { collision := false intersection_point := v.Point2d{X: 0, Y: 0} bot_size := float32(5.0) bot_polygon := v.OrientedSquare(r.Position, r.Heading, bot_size) // Check Walls r_walls := v.AABB2d{A: v.Point2d{X: bot_size, Y: bot_size}, B: v.Point2d{X: g.width - bot_size, Y: g.height - bot_size}} collision, _, pos := v.RectIntersection(r_walls, r.Position, move_vector) if collision { return collision, pos, nil } // Check Other Bots for player := range g.players { for _, bot := range player.Robots { if bot.Id == r.Id { continue } player_rect := v.OrientedSquare(bot.Position, bot.Heading, bot_size) collision, move_collision, translation := v.PolyPolyIntersection( bot_polygon, move_vector, player_rect) if collision || move_collision { return true, r.Position.Add(move_vector).Add(translation.Scale(1.1)), bot } } } // Check Obstacles for _, obj := range g.obstacles { collision, move_collision, translation := v.PolyPolyIntersection( bot_polygon, move_vector, obj.Bounds.ToPolygon()) if collision || move_collision { // log.Printf(" COLLISION: %v %v %v\n", collision, move_collition, translation) // log.Printf(" DETAILS: %v %v\n", r.Position, move_vector) // log.Printf(" INPUT: %v %v %v\n", bot_polygon, obj.Bounds.ToPolygon(), obj.Bounds) return true, r.Position.Add(move_vector).Add(translation.Scale(1.1)), nil } } return collision, intersection_point, nil } func (r *Robot) Tick(g *game) { r.Collision = false r.Hit = false r.scan(g) // Adjust Speed if r.Speed < r.TargetSpeed { r.Speed += (r.Stats.Acceleration * delta) if r.Speed > r.TargetSpeed { r.Speed = r.TargetSpeed } } else if float32(math.Abs(float64(r.Speed-r.TargetSpeed))) > v.Epsilon { r.Speed -= (r.Stats.Acceleration * delta) // Cap reverse to 1/2 speed if r.Speed < (-0.5 * r.TargetSpeed) { r.Speed = (-0.5 * r.TargetSpeed) } } else { r.Speed = r.TargetSpeed } // Adjust Heading current_heading := r.Heading if current_heading.Mag() == 0 && r.MoveTo != nil { // We may have been stopped before this and had no heading current_heading = r.MoveTo.Sub(r.Position).Normalize() } new_heading := current_heading if r.MoveTo != nil { // Where do we WANT to be heading? new_heading = r.MoveTo.Sub(r.Position).Normalize() } if r.DesiredHeading != nil { // Where do we WANT to be heading? new_heading = r.DesiredHeading.Normalize() } if new_heading.Mag() > 0 { // Is our direction change too much? Hard coding to 5 degrees/s for now angle := v.Angle(current_heading, new_heading) * v.Rad2deg dir := 1.0 if angle < 0 { dir = -1.0 } // Max turn radius in this case is in degrees per second if float32(math.Abs(float64(angle))) > (float32(r.Stats.TurnSpeed) * delta) { // New heading should be a little less, take current heading and // rotate by the max turn radius per frame. rot := (float32(r.Stats.TurnSpeed) * delta) * v.Deg2rad new_heading = current_heading.Rotate(rot * float32(dir)) } move_vector := new_heading.Scale(r.Speed * delta) collision, intersection_point, hit_robot := r.checkCollisions(g, move_vector) if collision { dmg := int(math.Abs(float64(r.Speed)) / 10.0) if dmg <= 0 { // All collisions need to do at least a little damage, // otherwise robots could get stuck and never die dmg = 1 } r.Collision = true if hit_robot != nil { hit_robot.Health -= dmg hit_robot.Speed = (hit_robot.Speed * 0.5) // hit_robot.Heading = r.Heading } if r.Position != intersection_point { r.Position = intersection_point } r.Health -= dmg r.MoveTo = &r.Position r.Speed = (r.Speed * -0.5) // r.Heading = r.Heading.Scale(-1.0) } else { r.Position = r.Position.Add(move_vector) if new_heading.Mag() > 0 { r.Heading = new_heading } else { log.Printf("Zero Heading %v", new_heading) } } } // We only self repair when we're stopped if math.Abs(float64(r.Speed)) < v.Epsilon && r.RepairCounter > 0 { r.RepairCounter -= delta if r.RepairCounter < 0 { r.Health += g.repair_hp if r.Health > r.Stats.Hp { r.Health = r.Stats.Hp } r.RepairCounter = g.repair_rate } } // We are only allowed to scan when we're stopped if math.Abs(float64(r.Speed)) < v.Epsilon && r.ActiveScan { r.ScanCounter += delta * float32(r.Stats.ScannerRadius) * 0.1 } else if r.ScanCounter > 0 { r.ScanCounter -= delta * float32(r.Stats.ScannerRadius) * 0.05 if r.ScanCounter <= 0 { r.ScanCounter = 0 } } if r.FireAt != nil { proj := r.fire(g.projectiles, g.turn) if proj != nil { g.projectiles[proj] = true } } if r.Probe != nil && r.ProbeResult == nil { probe_vector := r.Probe.Sub(r.Position) coll, pos, _ := r.checkCollisions(g, probe_vector) if coll { r.ProbeResult = &pos } } } func (r *Robot) scan(g *game) { r.Scanners = r.Scanners[:0] for player := range g.players { for _, bot := range player.Robots { if bot.Id == r.Id || bot.Health <= 0 { continue } dist := v.Distance(bot.Position, r.Position) if dist < float32(r.Stats.ScannerRadius+int(r.ScanCounter)) { s := Scanner{ Id: bot.Id, Type: "robot", } r.Scanners = append(r.Scanners, s) } } } for proj := range g.projectiles { if proj.Owner == r { continue } dist := v.Distance(proj.Position, r.Position) if dist < float32(r.Stats.ScannerRadius+int(r.ScanCounter)) { s := Scanner{ Id: proj.Id, Type: "projectile", } r.Scanners = append(r.Scanners, s) } } for splo := range g.splosions { dist := v.Distance(splo.Position, r.Position) if dist < float32(r.Stats.ScannerRadius+int(r.ScanCounter)) { s := Scanner{ Id: splo.Id, Type: "explosion", } r.Scanners = append(r.Scanners, s) } } } func (r *Robot) fire(projectiles map[*Projectile]bool, turn int) *Projectile { // Throttle the fire rate time_since_fired := (float32(turn) * (delta * 1000)) - (float32(r.LastFired) * (delta * 1000)) if time_since_fired < float32(r.Stats.FireRate) { return nil } r.LastFired = turn return &Projectile{ Id: idg.Hash(), Position: r.Position, MoveTo: *r.FireAt, Damage: r.Stats.WeaponDamage, Radius: r.Stats.WeaponRadius, Speed: r.Stats.WeaponSpeed, Owner: r, } } func (r *Robot) reset(g *game) { for { start_pos := v.Point2d{ X: rand.Float32() * float32(g.width), Y: rand.Float32() * float32(g.height), } r.MoveTo = &start_pos r.Position = start_pos r.Health = r.Stats.Hp // Check Obstacles retry := false for _, obj := range g.obstacles { _, inside, _ := v.RectIntersection(obj.Bounds, r.Position, v.Vector2d{0, 0}) if inside { retry = true } } if !retry { break } } }