package main import ( // "encoding/json" "errors" "log" "sort" "sync" "time" ) const maxPlayer = 128 type BotHealth struct { RobotId string `json:"robot_id"` Health int `json:"health"` } type Boardstate struct { MyRobots []Robot `json:"my_robots"` OtherRobots []OtherRobot `json:"robots"` Projectiles []Projectile `json:"projectiles"` Splosions []Splosion `json:"splosions"` Obstacles []Obstacle `json:"obj"` Reset bool `json:"reset"` Type string `json:"type"` Turn int `json:"turn"` AllBots []BotHealth `json:"all_bots"` } func NewBoardstate() *Boardstate { return &Boardstate{ MyRobots: []Robot{}, OtherRobots: []OtherRobot{}, Projectiles: []Projectile{}, Splosions: []Splosion{}, AllBots: []BotHealth{}, Type: "boardstate", } } type Scanner struct { Id string `json:"id"` Type string `json:"type"` } type MapLock struct { m map[string]*game sync.RWMutex } // get is a function that returns a game if found, and creates one if // not found and force is true. In order to get a hash (rather than use // the string you pass) send "" for id. func (ml *MapLock) get(id string, force bool) (*game, error) { ml.Lock() g, ok := games.m[id] ml.Unlock() if ok { return g, nil } if !force { return nil, errors.New("game not found") } if id == "" { id = idg.Hash() } _g := NewGame(id, float32(*width), float32(*height)) go _g.run() ml.Lock() ml.m[id] = _g ml.Unlock() return _g, nil } type game struct { id string players map[*player]bool projectiles map[*Projectile]bool splosions map[*Splosion]bool obstacles []Obstacle register chan *player unregister chan *player turn int width, height float32 spectators map[*Spectator]bool sregister chan *Spectator sunregister chan *Spectator kill chan bool } func NewGame(id string, width, height float32) *game { g := &game{ id: id, register: make(chan *player), unregister: make(chan *player, maxPlayer), projectiles: make(map[*Projectile]bool), splosions: make(map[*Splosion]bool), obstacles: GenerateObstacles(5, width, height), players: make(map[*player]bool), turn: 0, width: width, height: height, spectators: make(map[*Spectator]bool), sregister: make(chan *Spectator), sunregister: make(chan *Spectator), kill: make(chan bool, maxPlayer), } return g } func (g *game) tick(payload *Boardstate) int { robots_remaining := 0 payload.Obstacles = g.obstacles // Update Players for p := range g.players { if p.Robot.Health > 0 { robots_remaining++ p.Tick(g) } payload.OtherRobots = append( payload.OtherRobots, p.Robot.GetTruncatedDetails()) payload.AllBots = append( payload.AllBots, BotHealth{RobotId: p.Robot.Id, Health: p.Robot.Health}) } // Update Projectiles for pr := range g.projectiles { pr.Tick(g) } // We do this here, because the tick calls can alter g.projectiles for pr := range g.projectiles { payload.Projectiles = append(payload.Projectiles, *pr) } // Update Splosions for s := range g.splosions { s.Tick() if !s.Alive() { delete(g.splosions, s) } payload.Splosions = append(payload.Splosions, *s) } return robots_remaining } func (g *game) send_update(payload *Boardstate) { // Ensure that the robots are always sent in a consistent order sort.Sort(RobotSorter{Robots: payload.OtherRobots}) sort.Sort(AllRobotSorter{Robots: payload.AllBots}) for p := range g.players { // Copy the payload but only add the robots in scanner range player_payload := NewBoardstate() player_payload.Projectiles = payload.Projectiles player_payload.Splosions = payload.Splosions player_payload.Obstacles = payload.Obstacles player_payload.AllBots = payload.AllBots player_payload.Turn = payload.Turn player_payload.Reset = payload.Reset player_payload.MyRobots = append(player_payload.MyRobots, p.Robot) player_payload.OtherRobots = append( player_payload.OtherRobots, p.Robot.GetTruncatedDetails()) if p.Robot.Health > 0 { for player := range g.players { for _, scan_entry := range p.Robot.Scanners { if player.Robot.Id == scan_entry.Id { player_payload.OtherRobots = append( player_payload.OtherRobots, player.Robot.GetTruncatedDetails()) } } } } else { player_payload.OtherRobots = payload.OtherRobots } // x, _ := json.Marshal(player_payload) // log.Printf("%v", string(x)) p.send <- player_payload } for s := range g.spectators { s.send <- payload } } func (g *game) run() { var t0, t1 time.Time ticker := time.NewTicker(time.Duration(*tick) * time.Millisecond) for { select { case <-g.kill: log.Printf("game %s: received kill signal, dying gracefully", g.id) games.Lock() for player := range g.players { close(player.send) } delete(games.m, g.id) games.Unlock() return case p := <-g.register: g.players[p] = true case p := <-g.unregister: delete(g.players, p) close(p.send) case s := <-g.sregister: g.spectators[s] = true case s := <-g.sunregister: delete(g.spectators, s) close(s.send) case <-ticker.C: t0 = time.Now() payload := NewBoardstate() g.turn++ payload.Turn = g.turn if *verbose { log.Printf("\033[2JTurn: %v", g.turn) log.Printf("Players: %v", len(g.players)) log.Printf("Projectiles: %v", len(g.projectiles)) log.Printf("Explosions: %v", len(g.splosions)) } // UPDATE GAME STATE robots_remaining := g.tick(payload) // Determine end game? if robots_remaining <= 1 && len(g.players) > 1 { for p := range g.players { if p.Robot.Health > 0 { log.Printf("Robot %v Wins", p.Robot.Id) log.Printf("game %s: game over", g.id) } p.reset(g) g.obstacles = GenerateObstacles(5, g.width, g.height) } payload.Reset = true } else { payload.Reset = false } t1 = time.Now() if *verbose { log.Printf("Turn Processes %v\n", t1.Sub(t0)) } // SEND THE UPDATE TO EACH PLAYER g.send_update(payload) t1 = time.Now() if *verbose { log.Printf("Sent Payload %v\n", t1.Sub(t0)) } } } }