Compare commits

...

2 Commits

Author SHA1 Message Date
Fraser Graham
f8ecde3e81 Improving basic swarm bot 2014-04-27 00:49:16 -06:00
Fraser Graham
a2436fe8d8 chaneg the player interface to be more consistent with the JS version 2014-04-26 13:59:32 -06:00
3 changed files with 97 additions and 75 deletions

View File

@ -163,10 +163,14 @@ func (c *Client) Play() error {
if err != nil {
return errors.New(fmt.Sprintf("%s: Connection likely lost: %s", c.Name, err))
}
c.Player.Recv(&c.boardstate)
instruction := c.Player.Instruction()
err = c.enc.Encode(instruction)
instructions := make(map[string]server.Instruction)
for _,bot := range(c.boardstate.MyRobots){
instructions[bot.Id] = c.Player.Update(&bot, &c.boardstate)
}
err = c.enc.Encode(instructions)
if err != nil {
return err
}

View File

@ -30,6 +30,7 @@ var forceJSON = flag.Bool("json", false, "force json encoding")
func main() {
log.SetFlags(log.Ldate | log.Ltime | log.Lshortfile)
rand.Seed(time.Now().UnixNano())
var gameId string
flag.Parse()
@ -39,6 +40,7 @@ func main() {
gameId = flag.Arg(0)
}
client.Verbose = *verbose
c := &client.Client{
Server: *serverHostname,
Port: *port,

160
player.go
View File

@ -9,92 +9,135 @@ import (
"bitbucket.org/hackerbots/vector"
)
var Verbose bool = false
// Player is the interface that is implemented when specifying non-default
// player behavior.
//
// The general case will be to implement a Player type that contains the magic
// required to slay other robots quickly while staying alive for a long time.
type Player interface {
Recv(bs *server.Boardstate)
Instruction() map[string]server.Instruction
Update(bot *server.Robot, bs *server.Boardstate) server.Instruction
}
// SimplePlayer is our default player and stands as a starting point for your
// own Player implementations.
type SimplePlayer struct {
me server.Robot
width, height float32
width, height float64
knownObstacles map[string]server.Obstacle
nearestEnemy *server.OtherRobot
fireat *vector.Point2d
moveto *vector.Point2d
speed float32
maxSpeed float32
safeDistance float32
speed float64
maxSpeed float64
safeDistance float64
}
// NewSimplePlayer simply returns a populated, usable *SimplePlayer
func NewSimplePlayer(width, height float32) *SimplePlayer {
func NewSimplePlayer(width, height float64) *SimplePlayer {
return &SimplePlayer{
knownObstacles: make(map[string]server.Obstacle),
width: width,
height: height,
maxSpeed: 100,
safeDistance: 40,
maxSpeed: 1000,
safeDistance: 50,
}
}
// Recv is our implementation of receiving a server.Boardstate from the server
func (p *SimplePlayer) Recv(bs *server.Boardstate) {
p.speed = p.maxSpeed
if len(bs.MyRobots) > 0 {
p.me = bs.MyRobots[0]
} else {
return
func (p *SimplePlayer) Update(bot *server.Robot, bs *server.Boardstate) server.Instruction{
p.me = *bot
p.speed = 1000
if p.me.Health <= 0{
return server.Instruction{}
}
p.recon(bs)
p.navigate()
probe_point := p.me.Position.Add(p.me.Heading.Scale(p.safeDistance))
if Verbose {
fmt.Printf("PROBE SENT: %v\n",probe_point)
}
return server.Instruction{
MoveTo: p.moveto,
TargetSpeed: &p.speed,
FireAt: p.fireat,
Probe: &probe_point,
}
}
func (p *SimplePlayer) navigate() {
if Verbose {
fmt.Printf("%v S:%v H:%v TS:%v\n\tX:%v Y:%v\n\tHX:%v HY:%v\n",
p.me.Name, p.me.Speed, p.me.Health, p.me.TargetSpeed,
p.me.Position.X, p.me.Position.Y,
p.me.Heading.X, p.me.Heading.Y)
if p.me.MoveTo != nil {
fmt.Printf("\tTX:%v TY:%v\n",
p.me.MoveTo.X, p.me.MoveTo.Y)
}
}
// if !p.probe(p.me.Position.Add(p.me.Heading.Scale(p.safeDistance))) {
// if !p.probe(*p.moveto) {
// p.moveto = p.randomDirectionDrift(p.moveto, 20)
// // p.speed = p.maxSpeed
// fmt.Printf("Obstacle?\n")
// return
// }
// }
if p.me.ProbeResult != nil {
p.moveto = p.randomDirectionDrift(&p.me.Position, 100)
p.speed = -20
if Verbose {
fmt.Printf("Probe %v\n", p.me.ProbeResult)
}
return
}
if p.me.Collision != nil {
p.moveto = p.randomDirectionDrift(&p.me.Position, 100)
p.speed = -20
if Verbose {
fmt.Printf("Hit!\n")
}
return
}
if p.moveto == nil {
p.moveto = p.randomDirection()
// p.speed = p.maxSpeed
if Verbose {
fmt.Printf("Start\n")
}
return
}
togo := p.me.Position.Sub(*p.moveto).Mag()
if togo < p.safeDistance+5 {
p.moveto = p.randomDirection()
return
}
if !p.probe(p.me.Position.Add(p.me.Heading.Scale(p.safeDistance))) {
p.speed = 0
if !p.probe(*p.moveto) {
p.moveto = p.randomDirection()
return
// p.speed = p.maxSpeed
if Verbose {
fmt.Printf("New Dest\n")
}
}
if p.me.Collision != nil {
p.moveto = p.randomDirection()
p.speed = 0
return
}
}
func (p *SimplePlayer) recon(bs *server.Boardstate) {
for _, o := range bs.Objects {
obj := MiniObstacle(o)
if _, ok := p.knownObstacles[obj.Id()]; !ok {
p.knownObstacles[obj.Id()] = obj.ToObstacle()
}
}
// simplest shooting strategy ... need to do the following:
// not shoot through buildings
// shoot at where the robot will be, not where it was.
p.nearestEnemy = nil
p.fireat = nil
closest := float32(math.Inf(1))
closest := math.Inf(1)
for _, enemy := range bs.OtherRobots {
dist := p.me.Position.Sub(enemy.Position).Mag()
if dist < closest && dist > p.safeDistance {
@ -107,22 +150,23 @@ func (p *SimplePlayer) recon(bs *server.Boardstate) {
}
}
// Instruction is our default implementation of preparing a map of information
// to be sent to server.
func (p *SimplePlayer) Instruction() map[string]server.Instruction {
return map[string]server.Instruction{
p.me.Id: {
MoveTo: p.moveto,
TargetSpeed: &p.speed,
FireAt: p.fireat,
},
func (p *SimplePlayer) randomDirectionDrift(start *vector.Point2d, drift float64) *vector.Point2d {
for {
pt := vector.Vector2d{
X: start.X - drift + rand.Float64() * drift * 2,
Y: start.Y - drift + rand.Float64() * drift * 2,
}.ToPoint()
if pt.X > 0 && pt.X < p.width && pt.Y > 0 && pt.Y < p.height {
return &pt
}
}
}
func (p *SimplePlayer) randomDirection() *vector.Point2d {
pt := vector.Vector2d{
X: rand.Float32() * p.width,
Y: rand.Float32() * p.height,
X: rand.Float64() * p.width,
Y: rand.Float64() * p.height,
}.ToPoint()
return &pt
}
@ -141,31 +185,3 @@ func (p *SimplePlayer) probe(destination vector.Point2d) bool {
}
return true
}
// MiniObstacle is a convenient way to encode/decode between the [4]int -> server.Obstacle
type MiniObstacle [4]int
// id is used to calculate a key for use in maps
func (mo *MiniObstacle) Id() string {
return fmt.Sprintf(
"%x%x%x%x",
mo[0],
mo[1],
mo[2],
mo[3],
)
}
func (mo MiniObstacle) String() string {
return mo.Id()
}
// ToObstacle is where the conversion magic happens
func (mo *MiniObstacle) ToObstacle() server.Obstacle {
return server.Obstacle{
Bounds: vector.AABB2d{
A: vector.Point2d{X: float32(mo[0]), Y: float32(mo[1])},
B: vector.Point2d{X: float32(mo[2]), Y: float32(mo[3])},
},
}
}