Moved definition of what robots have which stats into the player interface

This commit is contained in:
Fraser Graham 2016-07-13 16:04:48 -06:00
parent 70adb5b713
commit 35cb8431f6
6 changed files with 273 additions and 148 deletions

View File

@ -52,7 +52,7 @@ type decoder interface {
}
// Negotiate runs through the hackerbots negociation protocol.
func (c *Client) Negotiate(clientType string) (err error) {
func (c *Client) Negotiate(clientType string, player Player) (err error) {
c.ws, err = connect(c.Server, c.Port)
if err != nil {
return errors.New(fmt.Sprintf("connection failure: %s", err))
@ -114,10 +114,8 @@ func (c *Client) Negotiate(clientType string) (err error) {
switch clientType {
case "robot":
conf := server.ClientConfig{
ID: c.GameId,
Stats: map[string]server.StatsRequest{
c.Name: c.StatsReq,
},
ID: c.GameId,
Stats: player.GetStats(),
}
err = websocket.JSON.Send(c.ws, conf)

View File

@ -36,7 +36,7 @@ func main() {
Player: client.Spectator{},
}
var err error
err = c.Negotiate("spectator")
err = c.Negotiate("spectator", c.Player)
if err != nil {
fmt.Fprintf(os.Stderr, "%s: failed to negotiate: %s\n", c.Name, err)
os.Exit(1)

View File

@ -27,6 +27,7 @@ var serverHostname = flag.String("server", "localhost", "server hostname")
var port = flag.Int("port", 8666, "server port")
var botname = flag.String("name", "gobot", "the name that other players will see")
var forceJSON = flag.Bool("json", false, "force json encoding")
var botType = flag.String("bot", "simple", "which Bot")
func main() {
rand.Seed(time.Now().UnixNano())
@ -58,11 +59,17 @@ func main() {
ForceJSON: *forceJSON,
StateStream: make(chan *server.Boardstate),
Die: make(chan struct{}),
Player: client.NewSimplePlayer(800, 600),
}
switch *botType {
case "simple":
c.Player = client.NewSimplePlayer(800, 600, c.StatsReq)
case "fraserbot":
c.Player = client.NewFraserbot("Fraserbot", c.StatsReq)
}
var err error
err = c.Negotiate("robot")
err = c.Negotiate("robot", c.Player)
if err != nil {
fmt.Fprintf(os.Stderr, "%s: failed to negociate: %s\n", c.Name, err)
os.Exit(1)

96
fraserbot.go Normal file
View File

@ -0,0 +1,96 @@
package client
import (
"fmt"
"math/rand"
"hackerbots.us/server"
"hackerbots.us/vector"
)
// Fraserbot is a bad ass motherfucker, that will fuck SHIT UUUUUP
type Fraserbot struct {
me server.Robot
knownObstacles map[string]server.Obstacle
nearestEnemy *server.OtherRobot
fireat *vector.Point2d
moveto *vector.Point2d
speed float64
stats server.StatsRequest
name string
}
// NewFraserbot simply returns a populated, usable *Fraserbot
func NewFraserbot(name string, stats server.StatsRequest) *Fraserbot {
return &Fraserbot{
knownObstacles: make(map[string]server.Obstacle),
stats: stats,
name: name,
}
}
// GetStats returns a map with an entry for each robot the player will control
// containing the desired stats for that robot
func (p *Fraserbot) GetStats() map[string]server.StatsRequest {
s := make(map[string]server.StatsRequest)
s[fmt.Sprintf("%v_MAIN", p.name)] = server.StatsRequest{
Hp: 10,
Speed: 10,
Acceleration: 10,
ScannerRadius: 10,
TurnSpeed: 10,
FireRate: 10,
WeaponRadius: 10,
WeaponDamage: 10,
WeaponSpeed: 10,
}
s[fmt.Sprintf("%v_Jr", p.name)] = server.StatsRequest{
Hp: 10,
Speed: 10,
Acceleration: 10,
ScannerRadius: 10,
TurnSpeed: 10,
FireRate: 10,
WeaponRadius: 10,
WeaponDamage: 10,
WeaponSpeed: 10,
}
return s
}
// Update is our implementation of recieving and processing a server.Boardstate
// from the server
func (p *Fraserbot) Update(bs *server.Boardstate) map[string]server.Instruction {
instructions := make(map[string]server.Instruction)
for _, bot := range bs.MyRobots {
p.me = bot
p.speed = 1000
if p.moveto == nil {
p.moveto = &p.me.Position
}
if p.me.Position.Sub(*p.moveto).Mag() < 30 {
p.moveto = p.randomDirection()
}
instructions[bot.Id] = server.Instruction{
MoveTo: p.moveto,
TargetSpeed: &p.speed,
FireAt: p.fireat,
}
}
return instructions
}
// randomDirection is a spot within 200 of the current position
func (p *Fraserbot) randomDirection() *vector.Point2d {
pt := vector.Vector2d{
X: (rand.Float64() * 400) - 200 + p.me.Position.X,
Y: (rand.Float64() * 400) - 200 + p.me.Position.Y,
}.ToPoint()
return &pt
}

151
player.go
View File

@ -1,12 +1,6 @@
package client
import (
"math"
"math/rand"
"hackerbots.us/server"
"hackerbots.us/vector"
)
import "hackerbots.us/server"
// Player is the interface that is implemented when specifying non-default
// player behavior.
@ -14,143 +8,22 @@ import (
// The general case will be to implement a Player type that contains the magic
// required to slay other robots quickly while staying alive for a long time.
type Player interface {
// GetStats returns a map with an entry for each robot the player will control
// containing the desired stats for that robot
GetStats() map[string]server.StatsRequest
// Update is called on reciept of a board state packet and the response is
// the instructions for each robot in a map of robot id to instructions
Update(bs *server.Boardstate) map[string]server.Instruction
}
// SimplePlayer is our default player and stands as a starting point for your
// own Player implementations.
type SimplePlayer struct {
me server.Robot
width, height float64
knownObstacles map[string]server.Obstacle
nearestEnemy *server.OtherRobot
fireat *vector.Point2d
moveto *vector.Point2d
speed float64
maxSpeed float64
safeDistance float64
}
// NewSimplePlayer simply returns a populated, usable *SimplePlayer
func NewSimplePlayer(width, height float64) *SimplePlayer {
return &SimplePlayer{
knownObstacles: make(map[string]server.Obstacle),
width: width,
height: height,
maxSpeed: 100,
safeDistance: 40,
}
}
// Update is our implementation of recieving and processing a server.Boardstate
// from the server
func (p *SimplePlayer) Update(bs *server.Boardstate) map[string]server.Instruction {
instructions := make(map[string]server.Instruction)
for _, bot := range bs.MyRobots {
p.me = bot
p.speed = 1000
if p.me.Health <= 0 {
continue
}
p.recon(bs)
p.navigate()
probe_point := p.me.Position.Add(p.me.Heading.Scale(p.safeDistance))
instructions[bot.Id] = server.Instruction{
MoveTo: p.moveto,
TargetSpeed: &p.speed,
FireAt: p.fireat,
Probe: &probe_point,
}
}
return instructions
}
func (p *SimplePlayer) navigate() {
if p.moveto == nil {
p.moveto = p.randomDirection()
}
togo := p.me.Position.Sub(*p.moveto).Mag()
if togo < p.safeDistance+5 {
p.moveto = p.randomDirection()
return
}
if !p.probe(p.me.Position.Add(p.me.Heading.Scale(p.safeDistance))) {
p.speed = 0
if !p.probe(*p.moveto) {
p.moveto = p.randomDirection()
return
}
}
if p.me.Collision != nil {
p.moveto = p.randomDirection()
p.speed = 0
return
}
}
func (p *SimplePlayer) recon(bs *server.Boardstate) {
// XXX: need to keep track of seen objects ..
// simplest shooting strategy ... need to do the following:
// not shoot through buildings
// shoot at where the robot will be, not where it was.
p.nearestEnemy = nil
p.fireat = nil
closest := math.Inf(1)
for _, enemy := range bs.OtherRobots {
dist := p.me.Position.Sub(enemy.Position).Mag()
if dist < closest && dist > p.safeDistance {
p.nearestEnemy = &enemy
}
}
if p.nearestEnemy != nil {
point := p.nearestEnemy.Position.Add(p.nearestEnemy.Heading.Scale(p.safeDistance))
p.fireat = &point
}
}
// Instruction is our default implementation of preparing a map of information
// to be sent to server.
func (p *SimplePlayer) Instruction() map[string]server.Instruction {
return map[string]server.Instruction{
p.me.Id: {
MoveTo: p.moveto,
TargetSpeed: &p.speed,
FireAt: p.fireat,
},
}
}
func (p *SimplePlayer) randomDirection() *vector.Point2d {
pt := vector.Vector2d{
X: rand.Float64() * p.width,
Y: rand.Float64() * p.height,
}.ToPoint()
return &pt
}
func (p *SimplePlayer) probe(destination vector.Point2d) bool {
// XXX: make test for this
for _, v := range p.knownObstacles {
collided, _, _ := vector.RectIntersection(
v.Bounds,
p.me.Position,
destination.Sub(p.me.Position),
)
if collided {
return false
}
}
return true
}
type Spectator struct{}
func (s Spectator) GetStats() map[string]server.StatsRequest {
return nil
}
func (s Spectator) Update(bs *server.Boardstate) map[string]server.Instruction {
return nil
}

151
simple_player.go Normal file
View File

@ -0,0 +1,151 @@
package client
import (
"math"
"math/rand"
"hackerbots.us/server"
"hackerbots.us/vector"
)
// SimplePlayer is our default player and stands as a starting point for your
// own Player implementations.
type SimplePlayer struct {
me server.Robot
width, height float64
knownObstacles map[string]server.Obstacle
nearestEnemy *server.OtherRobot
fireat *vector.Point2d
moveto *vector.Point2d
speed float64
maxSpeed float64
safeDistance float64
stats server.StatsRequest
}
// NewSimplePlayer simply returns a populated, usable *SimplePlayer
func NewSimplePlayer(width, height float64, stats server.StatsRequest) *SimplePlayer {
return &SimplePlayer{
knownObstacles: make(map[string]server.Obstacle),
width: width,
height: height,
maxSpeed: 100,
safeDistance: 40,
stats: stats,
}
}
// GetStats returns a map with an entry for each robot the player will control
// containing the desired stats for that robot
func (p *SimplePlayer) GetStats() map[string]server.StatsRequest {
s := make(map[string]server.StatsRequest)
s["simple"] = p.stats
return s
}
// Update is our implementation of recieving and processing a server.Boardstate
// from the server
func (p *SimplePlayer) Update(bs *server.Boardstate) map[string]server.Instruction {
instructions := make(map[string]server.Instruction)
for _, bot := range bs.MyRobots {
p.me = bot
p.speed = 1000
if p.me.Health <= 0 {
continue
}
p.recon(bs)
p.navigate()
probe_point := p.me.Position.Add(p.me.Heading.Scale(p.safeDistance))
instructions[bot.Id] = server.Instruction{
MoveTo: p.moveto,
TargetSpeed: &p.speed,
FireAt: p.fireat,
Probe: &probe_point,
}
}
return instructions
}
func (p *SimplePlayer) navigate() {
if p.moveto == nil {
p.moveto = p.randomDirection()
}
togo := p.me.Position.Sub(*p.moveto).Mag()
if togo < p.safeDistance+5 {
p.moveto = p.randomDirection()
return
}
if !p.probe(p.me.Position.Add(p.me.Heading.Scale(p.safeDistance))) {
p.speed = 0
if !p.probe(*p.moveto) {
p.moveto = p.randomDirection()
return
}
}
if p.me.Collision != nil {
p.moveto = p.randomDirection()
p.speed = 0
return
}
}
func (p *SimplePlayer) recon(bs *server.Boardstate) {
// XXX: need to keep track of seen objects ..
// simplest shooting strategy ... need to do the following:
// not shoot through buildings
// shoot at where the robot will be, not where it was.
p.nearestEnemy = nil
p.fireat = nil
closest := math.Inf(1)
for _, enemy := range bs.OtherRobots {
dist := p.me.Position.Sub(enemy.Position).Mag()
if dist < closest && dist > p.safeDistance {
p.nearestEnemy = &enemy
}
}
if p.nearestEnemy != nil {
point := p.nearestEnemy.Position.Add(p.nearestEnemy.Heading.Scale(p.safeDistance))
p.fireat = &point
}
}
// Instruction is our default implementation of preparing a map of information
// to be sent to server.
func (p *SimplePlayer) Instruction() map[string]server.Instruction {
return map[string]server.Instruction{
p.me.Id: {
MoveTo: p.moveto,
TargetSpeed: &p.speed,
FireAt: p.fireat,
},
}
}
func (p *SimplePlayer) randomDirection() *vector.Point2d {
pt := vector.Vector2d{
X: rand.Float64() * p.width,
Y: rand.Float64() * p.height,
}.ToPoint()
return &pt
}
func (p *SimplePlayer) probe(destination vector.Point2d) bool {
// XXX: make test for this
for _, v := range p.knownObstacles {
collided, _, _ := vector.RectIntersection(
v.Bounds,
p.me.Position,
destination.Sub(p.me.Position),
)
if collided {
return false
}
}
return true
}