// Copyright 2014 Google Inc. // Modified 2018 by Jonathan Amsterdam (jbamsterdam@gmail.com) // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Package btree implements in-memory B-Trees of arbitrary degree. // // This implementation is based on google/btree (http://github.com/google/btree), and // much of the code is taken from there. But the API has been changed significantly, // particularly around iteration, and support for indexing by position has been // added. // // btree implements an in-memory B-Tree for use as an ordered data structure. // It is not meant for persistent storage solutions. // // It has a flatter structure than an equivalent red-black or other binary tree, // which in some cases yields better memory usage and/or performance. // See some discussion on the matter here: // http://google-opensource.blogspot.com/2013/01/c-containers-that-save-memory-and-time.html // Note, though, that this project is in no way related to the C++ B-Tree // implementation written about there. // // Within this tree, each node contains a slice of items and a (possibly nil) // slice of children. For basic numeric values or raw structs, this can cause // efficiency differences when compared to equivalent C++ template code that // stores values in arrays within the node: // * Due to the overhead of storing values as interfaces (each // value needs to be stored as the value itself, then 2 words for the // interface pointing to that value and its type), resulting in higher // memory use. // * Since interfaces can point to values anywhere in memory, values are // most likely not stored in contiguous blocks, resulting in a higher // number of cache misses. // These issues don't tend to matter, though, when working with strings or other // heap-allocated structures, since C++-equivalent structures also must store // pointers and also distribute their values across the heap. package btree import ( "fmt" "sort" "sync" ) // Key represents a key into the tree. type Key interface{} type Value interface{} // item is a key-value pair. type item struct { key Key value Value } type lessFunc func(interface{}, interface{}) bool // New creates a new B-Tree with the given degree and comparison function. // // New(2, less), for example, will create a 2-3-4 tree (each node contains 1-3 items // and 2-4 children). // // The less function tests whether the current item is less than the given argument. // It must provide a strict weak ordering. // If !less(a, b) && !less(b, a), we treat this to mean a == b (i.e. the tree // can hold only one of a or b). func New(degree int, less func(interface{}, interface{}) bool) *BTree { if degree <= 1 { panic("bad degree") } return &BTree{ degree: degree, less: less, cow: ©OnWriteContext{}, } } // items stores items in a node. type items []item // insertAt inserts a value into the given index, pushing all subsequent values // forward. func (s *items) insertAt(index int, m item) { *s = append(*s, item{}) if index < len(*s) { copy((*s)[index+1:], (*s)[index:]) } (*s)[index] = m } // removeAt removes a value at a given index, pulling all subsequent values // back. func (s *items) removeAt(index int) item { m := (*s)[index] copy((*s)[index:], (*s)[index+1:]) (*s)[len(*s)-1] = item{} *s = (*s)[:len(*s)-1] return m } // pop removes and returns the last element in the list. func (s *items) pop() item { index := len(*s) - 1 out := (*s)[index] (*s)[index] = item{} *s = (*s)[:index] return out } var nilItems = make(items, 16) // truncate truncates this instance at index so that it contains only the // first index items. index must be less than or equal to length. func (s *items) truncate(index int) { var toClear items *s, toClear = (*s)[:index], (*s)[index:] for len(toClear) > 0 { toClear = toClear[copy(toClear, nilItems):] } } // find returns the index where an item with key should be inserted into this // list. 'found' is true if the item already exists in the list at the given // index. func (s items) find(k Key, less lessFunc) (index int, found bool) { i := sort.Search(len(s), func(i int) bool { return less(k, s[i].key) }) // i is the smallest index of s for which k.Less(s[i].Key), or len(s). if i > 0 && !less(s[i-1].key, k) { return i - 1, true } return i, false } // children stores child nodes in a node. type children []*node // insertAt inserts a value into the given index, pushing all subsequent values // forward. func (s *children) insertAt(index int, n *node) { *s = append(*s, nil) if index < len(*s) { copy((*s)[index+1:], (*s)[index:]) } (*s)[index] = n } // removeAt removes a value at a given index, pulling all subsequent values // back. func (s *children) removeAt(index int) *node { n := (*s)[index] copy((*s)[index:], (*s)[index+1:]) (*s)[len(*s)-1] = nil *s = (*s)[:len(*s)-1] return n } // pop removes and returns the last element in the list. func (s *children) pop() (out *node) { index := len(*s) - 1 out = (*s)[index] (*s)[index] = nil *s = (*s)[:index] return } var nilChildren = make(children, 16) // truncate truncates this instance at index so that it contains only the // first index children. index must be less than or equal to length. func (s *children) truncate(index int) { var toClear children *s, toClear = (*s)[:index], (*s)[index:] for len(toClear) > 0 { toClear = toClear[copy(toClear, nilChildren):] } } // node is an internal node in a tree. // // It must at all times maintain the invariant that either // * len(children) == 0, len(items) unconstrained // * len(children) == len(items) + 1 type node struct { items items children children size int // number of items in the subtree: len(items) + sum over i of children[i].size cow *copyOnWriteContext } func (n *node) computeSize() int { sz := len(n.items) for _, c := range n.children { sz += c.size } return sz } func (n *node) checkSize() { sz := n.computeSize() if n.size != sz { panic(fmt.Sprintf("n.size = %d, computed size = %d", n.size, sz)) } } func (n *node) mutableFor(cow *copyOnWriteContext) *node { if n.cow == cow { return n } out := cow.newNode() if cap(out.items) >= len(n.items) { out.items = out.items[:len(n.items)] } else { out.items = make(items, len(n.items), cap(n.items)) } copy(out.items, n.items) // Copy children if cap(out.children) >= len(n.children) { out.children = out.children[:len(n.children)] } else { out.children = make(children, len(n.children), cap(n.children)) } copy(out.children, n.children) out.size = n.size return out } func (n *node) mutableChild(i int) *node { c := n.children[i].mutableFor(n.cow) n.children[i] = c return c } // split splits the given node at the given index. The current node shrinks, // and this function returns the item that existed at that index and a new node // containing all items/children after it. func (n *node) split(i int) (item, *node) { item := n.items[i] next := n.cow.newNode() next.items = append(next.items, n.items[i+1:]...) n.items.truncate(i) if len(n.children) > 0 { next.children = append(next.children, n.children[i+1:]...) n.children.truncate(i + 1) } n.size = n.computeSize() next.size = next.computeSize() return item, next } // maybeSplitChild checks if a child should be split, and if so splits it. // Returns whether or not a split occurred. func (n *node) maybeSplitChild(i, maxItems int) bool { if len(n.children[i].items) < maxItems { return false } first := n.mutableChild(i) item, second := first.split(maxItems / 2) n.items.insertAt(i, item) n.children.insertAt(i+1, second) // The size of n doesn't change. return true } // insert inserts an item into the subtree rooted at this node, making sure // no nodes in the subtree exceed maxItems items. Should an equivalent item be // be found/replaced by insert, its value will be returned. // // If computeIndex is true, the third return value is the index of the value with respect to n. func (n *node) insert(m item, maxItems int, less lessFunc, computeIndex bool) (old Value, present bool, idx int) { i, found := n.items.find(m.key, less) if found { out := n.items[i] n.items[i] = m if computeIndex { idx = n.itemIndex(i) } return out.value, true, idx } if len(n.children) == 0 { n.items.insertAt(i, m) n.size++ return old, false, i } if n.maybeSplitChild(i, maxItems) { inTree := n.items[i] switch { case less(m.key, inTree.key): // no change, we want first split node case less(inTree.key, m.key): i++ // we want second split node default: out := n.items[i] n.items[i] = m if computeIndex { idx = n.itemIndex(i) } return out.value, true, idx } } old, present, idx = n.mutableChild(i).insert(m, maxItems, less, computeIndex) if !present { n.size++ } if computeIndex { idx += n.partialSize(i) } return old, present, idx } // get finds the given key in the subtree and returns the corresponding item, along with a boolean reporting // whether it was found. // If computeIndex is true, it also returns the index of the key relative to the node's subtree. func (n *node) get(k Key, computeIndex bool, less lessFunc) (item, bool, int) { i, found := n.items.find(k, less) if found { return n.items[i], true, n.itemIndex(i) } if len(n.children) > 0 { m, found, idx := n.children[i].get(k, computeIndex, less) if computeIndex && found { idx += n.partialSize(i) } return m, found, idx } return item{}, false, -1 } // itemIndex returns the index w.r.t. n of the ith item in n. func (n *node) itemIndex(i int) int { if len(n.children) == 0 { return i } // Get the size of the node up to but not including the child to the right of // item i. Subtract 1 because the index is 0-based. return n.partialSize(i+1) - 1 } // Returns the size of the non-leaf node up to but not including child i. func (n *node) partialSize(i int) int { var sz int for j, c := range n.children { if j == i { break } sz += c.size + 1 } return sz } // cursorStackForKey returns a stack of cursors for the key, along with whether the key was found and the index. func (n *node) cursorStackForKey(k Key, cs cursorStack, less lessFunc) (cursorStack, bool, int) { i, found := n.items.find(k, less) cs.push(cursor{n, i}) idx := i if found { if len(n.children) > 0 { idx = n.partialSize(i+1) - 1 } return cs, true, idx } if len(n.children) > 0 { cs, found, idx := n.children[i].cursorStackForKey(k, cs, less) return cs, found, idx + n.partialSize(i) } return cs, false, idx } // at returns the item at the i'th position in the subtree rooted at n. // It assumes i is in range. func (n *node) at(i int) item { if len(n.children) == 0 { return n.items[i] } for j, c := range n.children { if i < c.size { return c.at(i) } i -= c.size if i == 0 { return n.items[j] } i-- } panic("impossible") } // cursorStackForIndex returns a stack of cursors for the index. // It assumes i is in range. func (n *node) cursorStackForIndex(i int, cs cursorStack) cursorStack { if len(n.children) == 0 { return cs.push(cursor{n, i}) } for j, c := range n.children { if i < c.size { return c.cursorStackForIndex(i, cs.push(cursor{n, j})) } i -= c.size if i == 0 { return cs.push(cursor{n, j}) } i-- } panic("impossible") } // toRemove details what item to remove in a node.remove call. type toRemove int const ( removeItem toRemove = iota // removes the given item removeMin // removes smallest item in the subtree removeMax // removes largest item in the subtree ) // remove removes an item from the subtree rooted at this node. func (n *node) remove(key Key, minItems int, typ toRemove, less lessFunc) (item, bool) { var i int var found bool switch typ { case removeMax: if len(n.children) == 0 { n.size-- return n.items.pop(), true } i = len(n.items) case removeMin: if len(n.children) == 0 { n.size-- return n.items.removeAt(0), true } i = 0 case removeItem: i, found = n.items.find(key, less) if len(n.children) == 0 { if found { n.size-- return n.items.removeAt(i), true } return item{}, false } default: panic("invalid type") } // If we get to here, we have children. if len(n.children[i].items) <= minItems { return n.growChildAndRemove(i, key, minItems, typ, less) } child := n.mutableChild(i) // Either we had enough items to begin with, or we've done some // merging/stealing, because we've got enough now and we're ready to return // stuff. if found { // The item exists at index 'i', and the child we've selected can give us a // predecessor, since if we've gotten here it's got > minItems items in it. out := n.items[i] // We use our special-case 'remove' call with typ=maxItem to pull the // predecessor of item i (the rightmost leaf of our immediate left child) // and set it into where we pulled the item from. n.items[i], _ = child.remove(nil, minItems, removeMax, less) n.size-- return out, true } // Final recursive call. Once we're here, we know that the item isn't in this // node and that the child is big enough to remove from. m, removed := child.remove(key, minItems, typ, less) if removed { n.size-- } return m, removed } // growChildAndRemove grows child 'i' to make sure it's possible to remove an // item from it while keeping it at minItems, then calls remove to actually // remove it. // // Most documentation says we have to do two sets of special casing: // 1) item is in this node // 2) item is in child // In both cases, we need to handle the two subcases: // A) node has enough values that it can spare one // B) node doesn't have enough values // For the latter, we have to check: // a) left sibling has node to spare // b) right sibling has node to spare // c) we must merge // To simplify our code here, we handle cases #1 and #2 the same: // If a node doesn't have enough items, we make sure it does (using a,b,c). // We then simply redo our remove call, and the second time (regardless of // whether we're in case 1 or 2), we'll have enough items and can guarantee // that we hit case A. func (n *node) growChildAndRemove(i int, key Key, minItems int, typ toRemove, less lessFunc) (item, bool) { if i > 0 && len(n.children[i-1].items) > minItems { // Steal from left child child := n.mutableChild(i) stealFrom := n.mutableChild(i - 1) stolenItem := stealFrom.items.pop() stealFrom.size-- child.items.insertAt(0, n.items[i-1]) child.size++ n.items[i-1] = stolenItem if len(stealFrom.children) > 0 { c := stealFrom.children.pop() stealFrom.size -= c.size child.children.insertAt(0, c) child.size += c.size } } else if i < len(n.items) && len(n.children[i+1].items) > minItems { // steal from right child child := n.mutableChild(i) stealFrom := n.mutableChild(i + 1) stolenItem := stealFrom.items.removeAt(0) stealFrom.size-- child.items = append(child.items, n.items[i]) child.size++ n.items[i] = stolenItem if len(stealFrom.children) > 0 { c := stealFrom.children.removeAt(0) stealFrom.size -= c.size child.children = append(child.children, c) child.size += c.size } } else { if i >= len(n.items) { i-- } child := n.mutableChild(i) // merge with right child mergeItem := n.items.removeAt(i) mergeChild := n.children.removeAt(i + 1) child.items = append(child.items, mergeItem) child.items = append(child.items, mergeChild.items...) child.children = append(child.children, mergeChild.children...) child.size = child.computeSize() n.cow.freeNode(mergeChild) } return n.remove(key, minItems, typ, less) } // BTree is an implementation of a B-Tree. // // BTree stores item instances in an ordered structure, allowing easy insertion, // removal, and iteration. // // Write operations are not safe for concurrent mutation by multiple // goroutines, but Read operations are. type BTree struct { degree int less lessFunc root *node cow *copyOnWriteContext } // copyOnWriteContext pointers determine node ownership. A tree with a cow // context equivalent to a node's cow context is allowed to modify that node. // A tree whose write context does not match a node's is not allowed to modify // it, and must create a new, writable copy (IE: it's a Clone). // // When doing any write operation, we maintain the invariant that the current // node's context is equal to the context of the tree that requested the write. // We do this by, before we descend into any node, creating a copy with the // correct context if the contexts don't match. // // Since the node we're currently visiting on any write has the requesting // tree's context, that node is modifiable in place. Children of that node may // not share context, but before we descend into them, we'll make a mutable // copy. type copyOnWriteContext struct{ byte } // non-empty, because empty structs may have same addr // Clone clones the btree, lazily. Clone should not be called concurrently, // but the original tree (t) and the new tree (t2) can be used concurrently // once the Clone call completes. // // The internal tree structure of b is marked read-only and shared between t and // t2. Writes to both t and t2 use copy-on-write logic, creating new nodes // whenever one of b's original nodes would have been modified. Read operations // should have no performance degredation. Write operations for both t and t2 // will initially experience minor slow-downs caused by additional allocs and // copies due to the aforementioned copy-on-write logic, but should converge to // the original performance characteristics of the original tree. func (t *BTree) Clone() *BTree { // Create two entirely new copy-on-write contexts. // This operation effectively creates three trees: // the original, shared nodes (old b.cow) // the new b.cow nodes // the new out.cow nodes cow1, cow2 := *t.cow, *t.cow out := *t t.cow = &cow1 out.cow = &cow2 return &out } // maxItems returns the max number of items to allow per node. func (t *BTree) maxItems() int { return t.degree*2 - 1 } // minItems returns the min number of items to allow per node (ignored for the // root node). func (t *BTree) minItems() int { return t.degree - 1 } var nodePool = sync.Pool{New: func() interface{} { return new(node) }} func (c *copyOnWriteContext) newNode() *node { n := nodePool.Get().(*node) n.cow = c return n } func (c *copyOnWriteContext) freeNode(n *node) { if n.cow == c { // clear to allow GC n.items.truncate(0) n.children.truncate(0) n.cow = nil nodePool.Put(n) } } // Set sets the given key to the given value in the tree. If the key is present in // the tree, its value is changed and the old value is returned along with a second // return value of true. If the key is not in the tree, it is added, and the second // return value is false. func (t *BTree) Set(k Key, v Value) (old Value, present bool) { old, present, _ = t.set(k, v, false) return old, present } func (t *BTree) SetWithIndex(k Key, v Value) (old Value, present bool, index int) { return t.set(k, v, true) } func (t *BTree) set(k Key, v Value, computeIndex bool) (old Value, present bool, idx int) { if t.root == nil { t.root = t.cow.newNode() t.root.items = append(t.root.items, item{k, v}) t.root.size = 1 return old, false, 0 } t.root = t.root.mutableFor(t.cow) if len(t.root.items) >= t.maxItems() { sz := t.root.size item2, second := t.root.split(t.maxItems() / 2) oldroot := t.root t.root = t.cow.newNode() t.root.items = append(t.root.items, item2) t.root.children = append(t.root.children, oldroot, second) t.root.size = sz } return t.root.insert(item{k, v}, t.maxItems(), t.less, computeIndex) } // Delete removes the item with the given key, returning its value. The second return value // reports whether the key was found. func (t *BTree) Delete(k Key) (Value, bool) { m, removed := t.deleteItem(k, removeItem) return m.value, removed } // DeleteMin removes the smallest item in the tree and returns its key and value. // If the tree is empty, it returns zero values. func (t *BTree) DeleteMin() (Key, Value) { item, _ := t.deleteItem(nil, removeMin) return item.key, item.value } // DeleteMax removes the largest item in the tree and returns its key and value. // If the tree is empty, it returns zero values. func (t *BTree) DeleteMax() (Key, Value) { item, _ := t.deleteItem(nil, removeMax) return item.key, item.value } func (t *BTree) deleteItem(key Key, typ toRemove) (item, bool) { if t.root == nil || len(t.root.items) == 0 { return item{}, false } t.root = t.root.mutableFor(t.cow) out, removed := t.root.remove(key, t.minItems(), typ, t.less) if len(t.root.items) == 0 && len(t.root.children) > 0 { oldroot := t.root t.root = t.root.children[0] t.cow.freeNode(oldroot) } return out, removed } // Get returns the value for the given key in the tree, or the zero value if the // key is not in the tree. // // To distinguish a zero value from a key that is not present, use GetWithIndex. func (t *BTree) Get(k Key) Value { var z Value if t.root == nil { return z } item, ok, _ := t.root.get(k, false, t.less) if !ok { return z } return item.value } // GetWithIndex returns the value and index for the given key in the tree, or the // zero value and -1 if the key is not in the tree. func (t *BTree) GetWithIndex(k Key) (Value, int) { var z Value if t.root == nil { return z, -1 } item, _, index := t.root.get(k, true, t.less) return item.value, index } // At returns the key and value at index i. The minimum item has index 0. // If i is outside the range [0, t.Len()), At panics. func (t *BTree) At(i int) (Key, Value) { if i < 0 || i >= t.Len() { panic("btree: index out of range") } item := t.root.at(i) return item.key, item.value } // Has reports whether the given key is in the tree. func (t *BTree) Has(k Key) bool { if t.root == nil { return false } _, ok, _ := t.root.get(k, false, t.less) return ok } // Min returns the smallest key in the tree and its value. If the tree is empty, it // returns zero values. func (t *BTree) Min() (Key, Value) { var k Key var v Value if t.root == nil { return k, v } n := t.root for len(n.children) > 0 { n = n.children[0] } if len(n.items) == 0 { return k, v } return n.items[0].key, n.items[0].value } // Max returns the largest key in the tree and its value. If the tree is empty, both // return values are zero values. func (t *BTree) Max() (Key, Value) { var k Key var v Value if t.root == nil { return k, v } n := t.root for len(n.children) > 0 { n = n.children[len(n.children)-1] } if len(n.items) == 0 { return k, v } m := n.items[len(n.items)-1] return m.key, m.value } // Len returns the number of items currently in the tree. func (t *BTree) Len() int { if t.root == nil { return 0 } return t.root.size } // Before returns an iterator positioned just before k. After the first call to Next, // the Iterator will be at k, or at the key just greater than k if k is not in the tree. // Subsequent calls to Next will traverse the tree's items in ascending order. func (t *BTree) Before(k Key) *Iterator { if t.root == nil { return &Iterator{} } var cs cursorStack cs, found, idx := t.root.cursorStackForKey(k, cs, t.less) // If we found the key, the cursor stack is pointing to it. Since that is // the first element we want, don't advance the iterator on the initial call to Next. // If we haven't found the key, then the top of the cursor stack is either pointing at the // item just after k, in which case we do not want to move the iterator; or the index // is past the end of the items slice, in which case we do. var stay bool top := cs[len(cs)-1] if found { stay = true } else if top.index < len(top.node.items) { stay = true } else { idx-- } return &Iterator{ cursors: cs, stay: stay, descending: false, Index: idx, } } // After returns an iterator positioned just after k. After the first call to Next, // the Iterator will be at k, or at the key just less than k if k is not in the tree. // Subsequent calls to Next will traverse the tree's items in descending order. func (t *BTree) After(k Key) *Iterator { if t.root == nil { return &Iterator{} } var cs cursorStack cs, found, idx := t.root.cursorStackForKey(k, cs, t.less) // If we found the key, the cursor stack is pointing to it. Since that is // the first element we want, don't advance the iterator on the initial call to Next. // If we haven't found the key, the the cursor stack is pointing just after the first item, // so we do want to advance. return &Iterator{ cursors: cs, stay: found, descending: true, Index: idx, } } // BeforeIndex returns an iterator positioned just before the item with the given index. // The iterator will traverse the tree's items in ascending order. // If i is not in the range [0, tr.Len()], BeforeIndex panics. // Note that it is not an error to provide an index of tr.Len(). func (t *BTree) BeforeIndex(i int) *Iterator { return t.indexIterator(i, false) } // AfterIndex returns an iterator positioned just after the item with the given index. // The iterator will traverse the tree's items in descending order. // If i is not in the range [0, tr.Len()], AfterIndex panics. // Note that it is not an error to provide an index of tr.Len(). func (t *BTree) AfterIndex(i int) *Iterator { return t.indexIterator(i, true) } func (t *BTree) indexIterator(i int, descending bool) *Iterator { if i < 0 || i > t.Len() { panic("btree: index out of range") } if i == t.Len() { return &Iterator{} } var cs cursorStack return &Iterator{ cursors: t.root.cursorStackForIndex(i, cs), stay: true, descending: descending, Index: i, } } // An Iterator supports traversing the items in the tree. type Iterator struct { Key Key Value Value // Index is the position of the item in the tree viewed as a sequence. // The minimum item has index zero. Index int cursors cursorStack // stack of nodes with indices; last element is the top stay bool // don't do anything on the first call to Next. descending bool // traverse the items in descending order } // Next advances the Iterator to the next item in the tree. If Next returns true, // the Iterator's Key, Value and Index fields refer to the next item. If Next returns // false, there are no more items and the values of Key, Value and Index are undefined. // // If the tree is modified during iteration, the behavior is undefined. func (it *Iterator) Next() bool { var more bool switch { case len(it.cursors) == 0: more = false case it.stay: it.stay = false more = true case it.descending: more = it.dec() default: more = it.inc() } if !more { return false } top := it.cursors[len(it.cursors)-1] item := top.node.items[top.index] it.Key = item.key it.Value = item.value return true } // When inc returns true, the top cursor on the stack refers to the new current item. func (it *Iterator) inc() bool { // Useful invariants for understanding this function: // - Leaf nodes have zero children, and zero or more items. // - Nonleaf nodes have one more child than item, and children[i] < items[i] < children[i+1]. // - The current item in the iterator is top.node.items[top.index]. it.Index++ // If we are at a non-leaf node, the current item is items[i], so // now we want to continue with children[i+1], which must exist // by the node invariant. We want the minimum item in that child's subtree. top := it.cursors.incTop(1) for len(top.node.children) > 0 { top = cursor{top.node.children[top.index], 0} it.cursors.push(top) } // Here, we are at a leaf node. top.index points to // the new current item, if it's within the items slice. for top.index >= len(top.node.items) { // We've gone through everything in this node. Pop it off the stack. it.cursors.pop() // If the stack is now empty,we're past the last item in the tree. if it.cursors.empty() { return false } top = it.cursors.top() // The new top's index points to a child, which we've just finished // exploring. The next item is the one at the same index in the items slice. } // Here, the top cursor on the stack points to the new current item. return true } func (it *Iterator) dec() bool { // See the invariants for inc, above. it.Index-- top := it.cursors.top() // If we are at a non-leaf node, the current item is items[i], so // now we want to continue with children[i]. We want the maximum item in that child's subtree. for len(top.node.children) > 0 { c := top.node.children[top.index] top = cursor{c, len(c.items)} it.cursors.push(top) } top = it.cursors.incTop(-1) // Here, we are at a leaf node. top.index points to // the new current item, if it's within the items slice. for top.index < 0 { // We've gone through everything in this node. Pop it off the stack. it.cursors.pop() // If the stack is now empty,we're past the last item in the tree. if it.cursors.empty() { return false } // The new top's index points to a child, which we've just finished // exploring. That child is to the right of the item we want to advance to, // so decrement the index. top = it.cursors.incTop(-1) } return true } // A cursor is effectively a pointer into a node. A stack of cursors identifies an item in the tree, // and makes it possible to move to the next or previous item efficiently. // // If the cursor is on the top of the stack, its index points into the node's items slice, selecting // the current item. Otherwise, the index points into the children slice and identifies the child // that is next in the stack. type cursor struct { node *node index int } // A cursorStack is a stack of cursors, representing a path of nodes from the root of the tree. type cursorStack []cursor func (s *cursorStack) push(c cursor) cursorStack { *s = append(*s, c) return *s } func (s *cursorStack) pop() cursor { last := len(*s) - 1 t := (*s)[last] *s = (*s)[:last] return t } func (s *cursorStack) top() cursor { return (*s)[len(*s)-1] } func (s *cursorStack) empty() bool { return len(*s) == 0 } // incTop increments top's index by n and returns it. func (s *cursorStack) incTop(n int) cursor { (*s)[len(*s)-1].index += n // Don't call top: modify the original, not a copy. return s.top() }